Observation of electron neutrin appearance from a muon neutri beam at the T2K experiment

よる電子型

T.Ishida (J-PARC / KEK) For the T2K Collaboration

KEK Seminar, 19th July 2013

1

T. Ishida (J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

The T2K Collaboration

-

*

~500 members, 59 Institutes, 11 countries

Canada	Italy	Poland	Spain	
TRIUMF	INFN, U. Bari	IFJ PAN, Cracow	IFAE, Barcelona	U. Sheffield
U. Alberta	INFN, U. Napoli	NCBJ, Warsaw	IFIC, Valencia	U. Warwick
U. B. Columbia	INFN, U. Padova	U. Silesia, Katowice		
U. Regina	INFN, U. Roma	U. Warsaw	Switzerland	USA
U. Toronto		Warsaw U. T.	ETH Zurich	Boston U.
U. Victoria	Japan	Wroklaw U.	U. Bern	Colorado S. U.
U. Winnipeg	ICRR Kamioka		U. Geneva	Duke U.
York U.	ICRR RCCN			Louisiana S. U.
	Kavli IPMU	Russia	United Kingdom	Stony Brook U.
France	KEK	INR	Imperial C. London	U. C. Irvine
CEA Saclay	Kobe U.		Lancaster U.	U. Colorado
IPN Lyon	Kyoto U.		Oxford U.	U. Pittsburgh
LLR E. Poly.	Miyagi U. Edu.		Queen Mary U. L.	U. Rochester
LPNHE Paris	Osaka City U.		STFC/Daresbury	U. Washington
	Okayama U.		STFC/RAL	
Germany	Tokyo Metropolitan L	J.	U. Liverpool	
Aachen U.	U. Tokyo			

T.Ishida(J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

Outline of this talk

Physics motivation

The T2K experiment

Observation of v_e appearance
 Summary and prospect

 $(v_{\mu} \text{ disappearance})$

Physics motivation

• Discovery of $V \mu \rightarrow V_e$ Direct detection of neutrino flavor **Neutrino Facility** mixing in "appearance" mode ν_{μ} to ν_{e} plays an important role to study CP violation and mass hierarchy $P(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta_{13}\sin^{2}\theta_{23}\sin^{2}(\Delta m^{2}_{31} L/4E)$ +(CPV term)+(matter term)... 0.06 Probability Leading(013) Total 0.04 295km 0.02 Matter 0 CPC(cosô) CPV ©C -0.02 $\sin\theta_{12} \times \sin\theta_{13} \times \sin\theta_{23} \times \sin\delta$ -0.04 $(\sin^2 2\theta_{13}=0.1, \delta=\pi/4)$ -0.06 E_{v} (GeV)

- 1999: Nishikawa & Totsuka proposed to measure v_e appearance
- Feb. 2000: Lol
- April 2004:
 - Officially approved by Japanese Government and 5yr construction started
 - T2K international collaboration officially formed
- April 23, 2009:
 - First neutrino beam production and commissioning started
- January 2010:
 - Data accumulation for oscillation search started!
 - Mar.11,2011 shutdown due to earthquake damage
- If June 2011: First 2.5σ indication of v_e appearance
 - Dec. 2011: Accelerator resumed operation
 - Mar.2012: T2K resumed data taking
- June/July 2012: 3.1 σ evidence of v_e appearance results

The T2K experiment (Overview)

- Conventional "horn-magnet-focused" v beam
 - 30GeV Protons on a graphite target: daughter $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
- First application of <u>Off-Axis(OA) beam</u>:
 - Beam is 2.50° off-axis with respect to the far detector direction
 - Low-energy narrow-band beam, peak at oscillation maximum
 - Small high-energy tail: reduce background events in T2K
- Near neutrino detectors @ 280m from target
 - On-Axis (INGRID) detector / Off-Axis (ND280) detector
- Far detector: Super-Kamiokande @ 295km from J-PARC

T. Ishida (J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

Oscillation Maximum $\sin^2 2\theta_{22} = 1.0$ 0 4 $\Delta m_{22}^2 = 2.4 \times 10^{-3} \, eV^2$ **□** OA 0.0° ₩ OA 2.0° $\Phi_{V_{\mu}}^{295km}\left(A.U.\right)$ ₩ OA 2.5° 2 E_{v} (GeV)

T.Ishida(J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

Target Station (TS)

- 3 horns / a baffle are supported from the wall of vessel by support modules.
- Apparatus on the beam-line are highly irradiated after beam. Remote maintenance is key issue.

T. Ishida (J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

Electromagnetic Horns and Target TZR

- By applying a 250kA pulsed current synchronized to the spill timing, a toroidal magnetic field of 1.6 Tesla is generated
- Current stability ~2%, Alignment : 0.3mm(x), 1mm(y,z)

Remote maintenance

Delivered POT to neutrino facility

- Stable operation at ~220kW achieved.
 - >1.2x10¹⁴ppp (1.5x10¹³x8b) is the *world record* of extracted protons per pulse for synchrotrons.
- Data for today's talk: <u>6.39x10²⁰ pot</u> (by Apr.12). 6.63x10²⁰ by May.8.
 - Statistics has been *doubled* successfully compared to the previous analysis (3.01x10²⁰pot)

Muon monitors

Ion Chambers

Total charge = 32.2 nC /1e12ppp

Shot-by-shot monitoring for the beam center 1 mrad shift of direction = $\sim 2\%$ shift of peak energy 1

On-Axis near detector (INGRID)

50,000t水チェレンコフ測定器 1991年から5年で建設 1996年4月から稼働

T. Ishida (J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

Hadron production measurements

T. Ishida (J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

• v_{e} component in T2K beam: ~1.1% (Intrinsic BG for v_{e} appearance search)

T. Ishida (J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

Off-axis near detector (ND280)

- Flux normalization/spectrum reconstruction
- Neutrino-nucleus interaction cross-sections

POD

ECAL

2 fine-grained detectors (FGD)

SMRD

Solenoid Coil

DS-ECAL

Barrel

ECAL

• 3 gas TPCs

UA1 Magnet Yoke

P0D (pi0 detector

Pine-Graine Detectors

- π^{0} detector (P0D)
- electromagnetic calorimeter (ECAL)

Instrumented magnet yoke

 Side Muon Range Detector (SMRD)

Typical tracker events

21

- v_{μ} CC-nonQE samples are separated into two categories ∆共鳴 **CC-nonQE in 2012 Release** Δ -resonance μ-ν_μ production Mostly P+ from Charged Current Quasi-**Elastic** 荷電 準弾性 v_{μ} 散乱 Deep Inelastic **Scattering** \mathbf{P} + 深非弾性 散乱
 - * non-QE events are now characterized by the presence of a pion candidate (including michel electrons) or electromagnetic objects.
 - * In the old 2012 analysis, nonQE was characterized by events with a second TPC/FGD track, so it could include true CCQE where the proton penetrated to the TPC.

T.Ishida(J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

Muon momentum distributions

In total 24,910 events (RUN1-4)

	CC0π	CC1π	CCother
	purities	purities	purities
CC0π	72.6%	6.4%	5.8%
CC1π	8.6%	49.4%	7.8%
CCother	11.4%	31%	73.8%
Bkg(NC+anti-nu)	2.3%	6.8%	8.7%
Out FGD1 FV	5.1%	6.5%	3.9%

MC w/o ND280 constraint

- Constrain (p_{μ}, θ_{μ}) distributions for each category
- Finer binning adopted compared to 2012 analysis

Parameter	w/o ND280 constraint	With ND280 constraint
M _A ^{QE} (GeV)	1.21 ± 0.45	1.223 ± 0.072
M _A ^{RES} (GeV)	1.41 ± 0.22	0.963 ± 0.063
CCQE Norm.*	1.00 ± 0.11	0.961 ± 0.076
CC1π Norm.**	1.15 ± 0.32	1.22 ± 0.16

• Significant changes to M_A^{RES} and CC1 π normalization parameters

Flux & cross section model parameters **T2**K

Extrapolated to the far detector

Predicted number of events and systematic uncertainties

Predicted # of events w/ 6.4 × 10 ²⁰ POT				The predicte	ed number of
Event category	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$		events di	stribution
v _e signal	0.38	16.42	Γ	w/o ND280 fi	
v _e background	3.17	2.93	3000	w/ ND280 fi	4.64±0.52
v_{μ} background (mainly NC	$(\tau^0) 0.89$	0.89	, i		$\sin^2 2\theta_{13} = 0.0$
$v_{\mu} + v_{e}$ background	0.20	0.19	2000 - Line -	$\sin^2 2\theta_{13} = 0$ $\sin^2 2\theta_{13} = 10$	
Total	4.64	20.44	arbit	$\Delta m_{32}^2 = 2.4 \times 10^3 \text{ eV}^2$ (Normal hierarchy)	
Total (w/ 2012 flux &	(5.15)	(21.77)	1000 -	⁰ α ⁼⁰ 5 64×10 ³⁰ p.o.t.	Kで期付される 【象数の確率分布
(cross section parameters)	~ /	()			
Systematic uncertainties			Ø	5 10 15 22	0 40
Error source	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$	2000	$\sin^2 2\theta_{12} = 0.1$	// w/o ND280
Beam flux $+ v$ int.	4.9 %	3.0 %	-	$\sin^2 2\theta_{23} = 1.0$	20.44 ± 1.80
w/ND constraint			1500	$-\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ (Normal hierarchy)	$\sin^2 2\theta_{12} = 0.1$
v int. (from other exp.)	6.7 %	7.5 %	Ditrary	$a_{cr} = 0$ - 6.4 × 10 ²⁰ p.o.t.	
Far detector (+FSI+SI+PN)	7.3 %	3.5 %	arl		
Total	11.1 %	8.8 %	500	-	
[Total (2012)	(13.0 %)	(9.9 %)]	Ē	10 79	
SKでの期待値誤差:4.64×0.	111=±0.52	20.44×0.088=	±1.80 ⁰	Expected number of sig	anal+background events

- Systematic uncertainties are reduced from 2012, due to improvements for near detector analysis : new selection (CCQE/1pi/other), improved reconstruction, finer binning
- Current analysis with ND constraint predicts consistent number of events compared to 2012 within its systematic uncertainties

v_e candidate event selection

SELECTION CRITERIA

- Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- 2. Only one reconstructed ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- 6. Event's invariant mass not consistent with π^0 mass
- 7. Reconstructed v energy E_v^{rec} <1,250MeV

26

v_e candidate event selection

SELECTION CRITERIA

- 1. Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- 2. Only one reconstructed ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- 6. Event's invariant mass not consistent with π^0 mass
- Reconstructed v energy E^{rec} <1,250MeV

Assumed Parameter Values

Parameter	Value
Δm^2_{21}	$7.6 imes 10^{-5} \mathrm{eV}^2$
Δm^2_{32}	$2.4 imes 10^{-3} \mathrm{eV^2}$
$\sin^2 2\theta_{12}$	0.8495
$\sin^2 2\theta_{23}$	1.0
$\sin^2 2\theta_{13}$	0.1
$\delta_{ m CP}$	0
Mass hierarchy	Normal
ν travel length	295 km
Earth density	$2.6 \mathrm{g/cm^3}$

PID parameter T.Ishida(J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

v_e candidate event selection

T. Ishida (J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

NC π^{0} background reduction (2012)

SELECTION CRITERIA

- 1. Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- 2. Only one reconstructed ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- 6. Event's invariant mass not consistent with π^0 mass
- Reconstructed ν energy E_v^{rec} <1,250MeV

Until 2012 analysis we used a special fitter which reconstruct each event with a two photon ring hypothesis, searching for the direction and energy of second ring which maximizes the likelihood.

Selected v_e candidates (2012)

SELECTION CRITERIA

- Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- 2. Only one reconstructed ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- 6. Event's invariant mass not consistent with π^0 mass

7. Reconstructed v energy E_v^{rec} <1,250MeV

RUN1-3 data (3.010×10 ²⁰ POT)		
Data	11	
MC Total ※	11.2	
$CC \boldsymbol{v}_{\mu}$	0.06	
CC v _e	1.8	
NC	1.2	
$CC v_{\mu} \rightarrow v_{e}$	8.2	

 $%3.3\pm0.4$ sys(sin²2θ₁₃=0) → p=0.0009(3.1σ)

NC π^{0} background reduction (this analysis: new π^{0} fitter)

SELECTION CRITERIA

- 1. Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- 2. Only one reconstructed ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- Event's invariant mass
 not consistent with π⁰
 mass → new 2D cut
- Reconstructed v energy E_v^{rec} <1,250MeV

Assumes two electron rings produced at a common vertex [12 parameters]

- •Vertex(X,Y,Z,T)
- •Directions($\theta_1, \varphi_1, \theta_2, \varphi_2$)
- •Momenta (p₁, p₂)
- •Conversion lengths (c1, c2)

* Start from result of the single-track electron fit.

2D cut : π^{0} mass and the likelihood ratio ln(L_{π^{0}}/L_e)

NC π^{0} background reduction

SELECTION CRITERIA

- 1. Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- 2. Only one reconstructed ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- 6. 2D cut : π^{0} mass and the likelihood ratio $ln(L_{\pi0}/L_{e})$
- Reconstructed v energy E^{rec} <1,250MeV

Selected v_e candidate events

SELECTION CRITERIA

- 1. Event fully contained in the ID and vertex is within the fiducial volume (FCFV)
- 2. Only one reconstructed ring (1R)
- 3. Ring is electron-like
- 4. Visible energy Evis >100MeV
- 5. No Michel electron
- 6. 2D cut : π^{0} mass and the likelihood ratio $ln(L_{\pi0}/L_{e})$
- 7. Reconstructed v energy E_v^{rec} <1,250MeV

v_e candidate

 4.64 ± 0.52 for sin²2 θ_{13} =0.0

The new NC π⁰ fitter removes all FV events rejected by 2012 analysis.
Additionally, 3 more events removed.
31 → 28 events remain.

Figure 12: ν_e candidate event #12

Figure 31: ν_e candidate event #31

1st and last candidate events in Run-4

Vertex distributions

• O(0.1%) of FCFV v e candidates

T.Ishida(J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

Data	28	
МС	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$
Osci. $v_{\mu} \rightarrow v_{e}$	0.38	16.42
ν _e BG _(Beam)	3.17	2.93
$\nu_{\mu}BG_{(NC\pi0etc)}$	0.89	0.89
$\overline{\boldsymbol{v}}_{e} + \overline{\boldsymbol{v}}_{\mu} \mathbf{B} \mathbf{G}$	0.20	0.19
MC Total	4.64	20.44
Sys.Err(%)	(11.1%)	(8.8%)
Sys.Err(#)	±0.52	±1.80
Sys.Err(%)-2012	(13.0%)	(9.9%)

Assumed Parameter Values

Parameter	Value	
Δm^2_{21}	$7.6 imes 10^{-5} \mathrm{eV}^2$	
Δm^2_{32}	$2.4 imes 10^{-3} \mathrm{eV^2}$	
$\sin^2 2\theta_{12}$	0.8495^{st}	
$\sin^2 2\theta_{23}$	1.0	
$\sin^2 2\theta_{13}$	0.1 (or 0)	
$\delta_{ m CP}$	0	
Mass hierarchy	Normal	
u travel length	$295 \mathrm{km}$	
Earth density	$2.6 \mathrm{g/cm^3}$	
※ 0.8704	in 2012 analysis	

- N_{exp}=20.4 at $\sin^2 2\theta_{13}$ =0.1, while we observe 28 events
- v_{μ} background significantly reduced by using new NC π^{0} fitter
 - **~2.3 events** expected with old ($m_{\pi 0}$ -only) reduction
- Systematic uncertainties are reduced from 2012 release, mainly thanks to improvements for the near detector analysis

Determination of neutrino oscillation parameters

An extended maximum likelihood fit as in 2012 analysis

- Scan over $\sin^2 2\theta_{13}$ to find its best-fit value, where a likelihood (\mathcal{L}) becomes maximum.
- \mathcal{L} is calculated by comparing the total number of observed events (N_{obs}) and electron momentum-angle (p_e, θ_e) of each event with MC predictions.
- We fix other oscillation parameters as shown in the previous page.

- \mathcal{L}_{norm} : Poisson probability with mean = N_{pred} to have N= N_{obs} events.
- \mathcal{L}_{shape} : Product of the probabilities that each event has a particular value of (p_e, θ_{e}).
 - φ : predicted Probability Density Function(PDF).
- *L*_{syst} : A multivariate normal distribution of systematic parameters defined by the parameters' prior values and covariance matrix.
- We use a Bayesian marginalization technique in order to incorporate the systematic uncertainties, by integrating over all systematic parameters.

Alternative (rate + E_v shape) analysis

 Fit data to the reconstructed energy distribution

$$E^{rec} = \frac{m_p^2 - (m_n - E_b)^2 - m_e^2 + 2(m_n - E_b)E_e}{2(m_n - E_b - E_e + p_e \cos \theta_e)}$$

T2

best fit w/ 68% C.L. error:

 $\sin^2 2\theta_{13} = 0.152^{+0.041}_{-0.034}$

assuming $|\Delta m_{32}^2|=2.4 \times 10^{-3} \text{ eV}^2$ $\delta_{CP}=0, \sin^2 2\theta_{23}=1,$ Normal hierarchy Very consistent to p- θ analysis $\sin^2 2\theta_{13} = 0.150^{+0.039}_{-0.034}$

- Allowed region of sin²2 θ ₁₃
 for each value of $\delta_{\rm CP}$
- Best fit w/ 68% C.L. error @ $\delta_{CP}=0$
 - normal hierarchy

 $\sin^2 2\theta_{13} = 0.150^{+0.039}_{-0.034}$

inverted hierarchy:

 $\sin^2 2\theta_{13} = 0.182^{+0.046}_{-0.040}$

Assuming $|\Delta m_{32}^2|=2.4 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta_{23}=1.0$

Cf. $\sin^2 2\theta_{13}$: 0.098±0.013 (PDG2012)

44

T. Ishida(J-PARC center/KEK) KEK Seminar, Kobayashi Hall (KEK) – Lecture Hall (JAEA), 19th July 2013

Message from T2K International Collaboration to J-PARC/JAEA/KEK Members

- This timely discovery was made possible by the unyielding and tireless effort by the J-PARC/JAEA/KEK staff members and management to deliver high quality beam to T2K.
- We should all remember that after the devastating March 2011 earthquake in eastern Japan, which caused severe damage to the accelerator complex and facilities at J-PARC, the beam commissioning was resumed within the calendar year, and physics data taking was also resumed within 1 year. It was not possible without all of your strong supports.
- We are excited to continue producing beautiful physics results, so let's continue to work together.

- We report a new result on v_e appearance analysis based on 6.39 x 10²⁰ protons on target.
 - 28 candidate events are observed, while expectation w/o v_{μ} to v_{e} oscillation is to be $4.6\pm0.5_{sys}$
 - An extended likelihood analysis over number of observed events and the momentum of electrons gives $\Delta \chi^2 = 56.3$ for sin²2 $\theta_{13} = 0.0$, thus the significance to exclude sin²2 $\theta_{13} = 0.0$ is calculated to be **7.5** σ
 - Note the results are dependent on assumptions on other neutrino oscillation parameters, such as $\sin^2\theta_{23}$ and δ_{CP} .

WE HAVE SUCCESSFULLY OBSERVED THE ν_{e} **APPEARANCE** which is one of the critical milestones for the further progress on the neutrino physics research.

- 6.39 x 10²⁰ protons on target is only ~8% exposure of T2K's design goal.
 - The v_e appearance study is still dominated by statistics.
 - We definitely need more data to proceed.
- T2K will continue to play an essential role to resolve the entire picture of neutrino mass and mixing.
 - Further studies on v_{μ} disappearance studies : $\Delta^2 m_{32}$, $\sin^2 \theta_{23}$, resolving octant degeneracy (θ_{23} <45° or >45°)
 - v_{μ} disappearance studies will contribute to the improvement on the v_{e} appearance studies.
 - Combined 3-flavor analysis on v e appearance and v $_{\mu}$ disappearance
 - Data taking with anti-neutrino beam.
 - First exploration onto CP-violationg phase, δ_{CP}