Latest Results of K2K

Takashi Kobayashi IPNS, KEK

Contents

- 1. Introduction
- 2. Experimental Setup
- 3. Results
 - 1. Observation at SK
 - 2. Measurements @ KEK
 - 3. Expected # of Events @ SK
- 4. Conclusion

Neutrino Oscillation

Neutrino Mixing

$$\left| \boldsymbol{\nu}_{l} \right\rangle = \Sigma \boldsymbol{V}_{li} \left| \boldsymbol{\nu}_{i} \right\rangle$$

Weak eigenstates

Mass eigenstates

Maki-Nakagawa-Sakata Matrix

$$\boldsymbol{V} = \begin{pmatrix} \boldsymbol{c}_{12} & \boldsymbol{s}_{12} & \boldsymbol{0} \\ -\boldsymbol{s}_{12} & \boldsymbol{c}_{12} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{1} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{1} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{c}_{23} & \boldsymbol{s}_{23} \\ \boldsymbol{0} & -\boldsymbol{s}_{23} & \boldsymbol{c}_{23} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{c}_{13} & \boldsymbol{0} & \boldsymbol{s}_{13} \\ \boldsymbol{0} & \boldsymbol{1} & \boldsymbol{0} \\ -\boldsymbol{s}_{13} & \boldsymbol{0} & \boldsymbol{c}_{13} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{1} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{e}^{-i\delta} \end{pmatrix}$$

Oscillation Probability

$$P_{l \to m} = \left| \left\langle \boldsymbol{v}_{m}(t) \middle| \boldsymbol{v}_{l}(0) \right\rangle \right|^{2}$$
$$= \delta_{ml} - 2 \sum_{i < j} \operatorname{Re} \left[\left(\boldsymbol{V}_{mi}^{*} \boldsymbol{V}_{li} \right) \cdot \left(\boldsymbol{V}_{mj} \boldsymbol{V}_{lj}^{*} \right) \cdot \left\{ 1 - \exp \left(-i \frac{\Delta m_{ij}^{2}}{2E} L \right) \right\} \right]$$

L: flight length, *E*: neutrino energy, $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$ mass eigenvalues

$$P_{l \to m} \neq \delta_{ml} \Leftrightarrow \Delta m_{ij} \neq 0$$

Motivation

Evidence of osc. in atm. ν observation by SK

 $\Delta m^2 = 2 \sim 5 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta > 0.88$ almost $v_\mu \rightarrow v_\tau$

Neutrino Oscillation(2flavors) $\boldsymbol{p} = \sin^2 2\boldsymbol{\theta} \cdot \sin^2 (1.27\Delta m^2 L / E_v)$

K2K: Establish non zero neutrino mass well defined flight length (=250 km) well defined artificial pure v_{μ} beam

	L	E	E/L	$ u_{\mu}/\nu_{e}$
Atm v	10 ~ 10 ⁴ km	<5GeV	0.5~5x10 ⁻⁴	2/1
K2K	250km	∼1GeV	4x10 ⁻³	99/1

K2K Overview

- •almost pure $\nu_{\mu}(99\%)$ beam w/ $\langle E_{\nu} \rangle \sim 1.3 \text{GeV}$
- •Far detector: Super Kamiokande(SK)@250km
- •Most sensitive at $\Delta m^2 \sim 7 \times 10^{-3} \text{ eV}^2$
- V_{μ} disappearance and V_e appearance

Expected Signal

Sensitive Region

 10^{20} POT (~5year)

Experimental Setup

Neutrino Beam Production

 $p+Al \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$

PS: 13GeV/c proton

1.1µsec spill/2.2sec
6x10¹²protons/spill (design)

Beam line: aligned toward SK using GPS

(global positioning system)
GPS< 0.01mrad, civil const<0.1mrad

Decay pipe: 200m

Target and Horns 2nd Magnetic Horn 1st Magnetic Horn 12 GeV protons tı B⊗ I=250 kA @ msec) I=250 kA @ msec) 10.5 m 2 (m) 2nd HornMagnet **Profile monitor for** primary proton beam р Proton bea **1st Horn Magnet** (MC) 8 250kA an x20 2 Neuth 0kA 0 4 E_{ν} (GeV) 9 2 3 1

Neutrino Spectra and Radial Distributions at 300m/250km (MC)

Almost const flux < 3mr(750m) @ SK Near/Far spectra differ

Spectrum Distortion at Off axis (MC)

Neutrino fluxes expected on beam axis and 1km(4mr) awa

Roles of Detectors in KEK

- Neutrino beam direction
 - Front neutrino detector (FD) (direct)
 - Muon monitor (indirect, fast)
- Absolute neutrino flux
 - FD
- Spectrum extrapolation from near(KEK) to far(250km)
 - Pion monitor
- Neutrino spectrum
 - FD
 - Pion monitor
- Study neutrino interaction
 - Future

Pion Monitor

Purpose:Measure momentum and angular distribution of pions, $N(p_{\pi}, \theta_{\pi})$

 $N(p_{\pi}, \theta_{\pi}) \rightarrow Neutrino flux \Phi(E_{\nu})$ at any distance using **only decay kinematics**

$$\mathbf{R}(E_{\nu}) \equiv \boldsymbol{\Phi}_{\mathrm{SK}}(E_{\nu}) / \boldsymbol{\Phi}_{\mathrm{FD}}(E_{\nu})$$

to avoid signal from 12GeV protons \rightarrow insensitive to $p_{\pi} < 2$ GeV ($E_{\nu} < 1$ GeV)

Muon Monitors

Segmented Ionization Chamber Silicon pad detector array

Behind beam dump

→Only sensitive to initially high energy μ (>5.5GeV)

Provide fast (spill-by-spill) monitoring of Intensity → targeting/horn stability Profile → beam direction

Front NeutrinoDetector(FD)

Purpose

- 1. v_{μ} absolute flux
- 2. v_{μ} directrion(profile)
- 3. v_e contamination
- ≻1kt water Cherenkov detector
- Scintillation Fiber Tracker(SFT): SF sheets+water(6cm)
- Electromagnetic calorimeter : lead glass
- Muon rande detector (MRD) : drift chamber+iron plates

Neutrino Energy Reconstruction (GeV region)

Assume CC quasi elastic (CCqe) reaction

Water Cherenkov 1ring μ -like sample

Inelastic scattering w/ invisible pion(s) give wrong energy

Event categories

1kt Event

H₂O target (same as SK) Same detection principle as SK

→ expect least syst. err. for SK exp'ed Fid. mass 25ton Event selection: Qtot>1000p.e. ~2events/100spill

Fe Event

Neutrino int. in MRD iron plates

CC inclusive (insensitive to NC) Large area coverage (8m) \rightarrow profile(vtx dist.) Large mass \rightarrow high rate (~5/100spill)

Good for neutrino dir. and int. monitor

SFT event

Neutrino int. in SFT H₂O target(+A1 20%)

Pos. resolution ~1mm

 \rightarrow well defined fid. vol.

 \rightarrow multi track resolution

Fid. mass = **5.8ton**

Event selection: matching SFT&MUC track levent/1000spill

Study neutrino interaction, e.g. $\sigma_{\text{inelastic}}/\sigma_{\text{elastic}}$

Far Detector

Super-Kamiokande @Kamioka (250km from KEK)

- 1000m underground @ Kamioka
- $\sim 40 \mathrm{m}^{\phi}$, $\sim 40 \mathrm{m}$ high
- 50,000t Pure water as target
- 11146 PMTs in inner tank
- 22.5kt Fiducial Volume
- Outer detector (OD) :active VETO

Strategy

For now,

1. count # of events @ SK

2. calc. expected # of events @ SK

$$N_{SK}^{\exp} = \frac{N_{FD}^{\text{obs}}}{\varepsilon_{FD}} \cdot R \cdot \varepsilon_{SK}$$

 N_{FD}^{obs} :observed # of events in one of FDs R: Near/far ratio from MC (guaranteed by Pi mon) ε : detection efficiency

3. compare N_{SK}^{obs} and N_{SK}^{exp}

use 1kt events as a reference check consistency btw. kt/Fe/SFT events

*eventually,... $N_{SK}^{obs}(E_{v})$ and $N_{SK}^{exp}(E_{v})$

Results

Delivered Beam

- Design Proton Int. 6x10¹² protons/pulse almost achieved (5.5x10¹²)
- $\sim 2.6 \times 10^{19}$ POT delivered by the end of Jun. '00
- SK Live = 2.29x10¹⁹ POT(Jun99-Jun00)

K2K event selection in SK

- 1. No pre-activity in 30µsec
- 2. p.e. in 300ns win.> 200
- 3. OD Nhit in largetst cluster<10
- 4. Deposite Energy > 30MeV
- 5. Fiducial cut (dist. from wall>2m)

 $\epsilon = 79\%$ (93% for CC)

GPS Time Stamping

GPS 1pps interpolated with local time clock(LTC

Stable within ~200ns

Typical SK Events ★ Super Kamiokande ★ NUM RUN 8290 SUBRUN 126 EVENT 16820616 DATE 2000-Jan-24 . 2 TIME TOT PE: MAX PE: 19:50: 5 8810.4 67.0 NMHIT 1843 ANT-PE: ANT-MX: 34.5 29 NMHITA: RunMODE : NORMAL TRG ID :00000111 Т diff.:0.564E+05u FEVSK :81002803 nOD YK/LW: 2/ 1 BAD ch.: masked 0/3 1(1/0/0 SUB EV Dec-e: 5.59220e12 SP: 2765 CT16: 4246SP: RN: 0.71600u GPSDIF: NHITAC: 1

Comnt;

Measurements *a* KEK

- Beam Direction
- Rate
- Spectrum Stability
- Spectrum extrapolation
- Neutrino spectrum
 - $CC \mu$ energy spectrum
 - $CC \mu$ angle

Stability of beam quality is of great impotance.

Beam Direction

Vertex distribution of Fe events (Nov99)

Centered within sys. err. of 20cm (0.7mrad)

Stability of Profile Center (Fe event)

Stable within ±1mrad.

Stability of Muon Profile Center (a) Muon Monitor

Fast (spill-by-spill) but indirect monitor

Stable within ±1mrad

Measurements of FDs

Event rate

Stability of Spectrum

Stable within stat. error.

Stability of muon angle

Pion Monitor Results

Pion Monitor Result

v_{μ} spectra from Pion Monitor Measurement

Agree with MC very well.

Expected # of SK events from 1kt detector

$$N_{SK}^{\exp} = \frac{N_{kt}^{\text{obs}}}{\varepsilon_{kt}} \cdot \boldsymbol{R} \cdot \varepsilon_{SK}$$

$$R = \frac{L_{SK}}{L_{kt}} \cdot \frac{M_{SK}}{M_{kt}} \cdot \frac{\int \Phi_{SK}(E_{\nu}) \cdot \sigma_{H_{2}O}(E_{\nu}) dE}{\int \Phi_{kt}(E_{\nu}) \cdot \sigma_{H_{2}O}(E_{\nu}) dE}$$

$N_{SK}^{\exp} = 37.8 \pm 0.2 (\text{stat.})_{-3.8}^{+3.5} (\text{syst.})$

c.f.: $N_{SK}^{exp} = 41.0_{-6.6}^{+6.0}$ (tot.) from Fe events : $N_{SK}^{exp} = 37.2_{-5.0}^{+4.6}$ (tot.) from SFT events

Consistent with each other.

Systematic Error for N_{SK}

$N_{SK}^{\exp} = 37.8 \pm 0.2 (\text{stat.})_{-3.8}^{+3.5} (\text{syst.})$

Near/Far Ratio	$^{+6}_{-7}$ %
1 kt Δ V/V	$\pm 4\%$
Multi Event	$\pm 3\%$
Spectrum(eff.)	±2%
SK(mainly $\Delta V/V$)	± 3%
Total	$^{+9}_{-10}$ %

of observed and expected events @ SK

	Obs.	No Ocsi.
FC 22.5kt	28	$37.8 \begin{array}{c} +3.5 \\ -3.8 \end{array}$
1-ring	15	$22.9{\pm}3.2$
μ -like	14	$20.9{\pm}3.2$
e-like	1	$2.0{\pm}0.4$
${\substack { ext{multi}} \\ ext{ring}}$	13	$14.9{\pm}2.4$

Reconstructed E_{ν}

Fully contained 1-ring µ-like (22.5kt)

Need to estimate syst. err. in MC expect.

Need to estimate syst. err. in MC expect.

Toward Spectrum Analysis

Detailed Study of FD data needed.

CCQE neutrino energy spectrum (GeV)

Data agree with MC fairly well.

Need more detailed analysis of FD data to extract spectrum information.

Conclusions

- Accumulated 2.29x10¹⁹POT @ SK from Jun '99 to Jun '00.
- Neutrino beam is well under control
 - Direction: always directed to SK within 1mrad
 - ➤ Spectrum: stable within stat. error
 - ➤ Intensity: stable within stat. error
 - ➢ Pi mon proved MC spectra ratio
- # of fully contained events in fiducial volume @ SK

Observed: 28

Expected : $37.8^{+3.5}_{-3.8}$ (w/o osc.)

- Deficit of 90% significance observed.
- Todo
 - → reduce systematic errors (Δ V/V, σ_{Fe} ,....)
 - ➤ spectrum analysis
 - need more stat
 - need more study on FD data
 - $\succ v_{e}$ appearance search
- Experiment resumed Jan. 2001

Expected Allowed Region

$10^{20} \text{ POT} \sim 5 \text{ years}$

