Mar.5, 2001 La Thuile 2001

Present and Future Long Baseline Neutrino Experiment in Japan

T.Kobayashi IPNS, KEK

Contents

1.Introduction

2.Results of K2K(hep-ex/0103001)

1. Experimental setup

2. Results

3.Neutrino oscillation experiment at JHF

1. Physics motivation

(http://neutrino.kek.jp/jhfnu)

- 2. JHFv project
- 3. Physics sensitivity
- 4. Future extensions

4.Summary

Neutrino Oscillation

Neutrino Mixing $|v_l\rangle = \Sigma U_{li}|v_i\rangle$

Weak Mass eigenstates eigenstates

Maki-Nakagawa-Sakata Matrix

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix}$$

Oscillation Probability

$$s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$$

$$P_{l \to m} = \left| \left\langle v_m(t) \middle| v_l(0) \right\rangle \right|^2 = \delta_{ml} - 2 \sum_{i < j} \operatorname{Re} \left[\left(U_{mi}^* U_{li} \right) \cdot \left(U_{mj} U_{lj}^* \right) \cdot \left\{ 1 - \exp \left(-i \frac{\Delta m_{ij}^2}{2E} L \right) \right\} \right]$$

I · flight length *E* · neutring energy $\Delta m^2 = m^2 - m^2$ *m* · mass eigenvalues

L: flight length, *E*: neutrino energy,
$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$
, m_i : mass eigenvalue

$$P_{l \to m} \neq \delta_{ml} \Leftrightarrow \Delta m_{ij} \neq 0$$

LFV

Atmospheric Neutrino

Super-Kamiokande 990days(FC,PC) + 1050days(upward-muon) Preliminary

Motivation

Evidence of osc. in atm. ν observation by SK

 $\Delta m^2 = 2 \sim 5 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta > 0.88$ almost $v_\mu \rightarrow v_\tau$

Neutrino Oscillation(2flavors) $\boldsymbol{p} = \sin^2 2\boldsymbol{\theta} \cdot \sin^2 (1.27\Delta m^2 L / E_v)$

K2K: Establish non zero neutrino mass well defined flight length (=250 km) well defined artificial pure v_{μ} beam

	L	E	E/L	$ u_{\mu}/\nu_{e}$
Atm v	10 ~ 10 ⁴ km	<5GeV	0.5~5x10 ⁻⁴	2/1
K2K	250km	∼1GeV	4x10 ⁻³	99/1

K2K Overview

- •almost pure $\nu_{\mu}(99\%)$ beam w/ $\langle E_{\nu} \rangle \sim 1.3 \text{GeV}$
- •Far detector: Super Kamiokande(SK)@250km
- •Most sensitive at $\Delta m^2 \sim 7 \times 10^{-3} \text{ eV}^2$
- V_{μ} disappearance and V_e appearance

Neutrino Beam Production

 $p+Al \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$

PS: 13GeV/c proton

1.1µsec spill/2.2sec
6x10¹²protons/spill (design)

Beam line: aligned toward SK using GPS

(global positioning system)
GPS< 0.01mrad, civil const<0.1mrad

Decay pipe: 200m

Neutrino Spectra and Radial Distributions at 300m/250km (MC)

Almost const flux < 1km(4mr) @ SK Near/Far spectra differ

Pion Monitor

Purpose:Measure momentum and angular distribution of pions, $N(p_{\pi}, \theta_{\pi})$

 $N(p_{\pi}, \theta_{\pi}) \rightarrow \text{Neutrino flux } \Phi(E_{\nu}) \text{ at any distance}$ using **only decay kinematics**

$$\mathbf{R}(E_{\nu}) \equiv \Phi_{\mathrm{SK}}(E_{\nu}) / \Phi_{\mathrm{FD}}(E_{\nu})$$

as a result of pion monitor

to avoid signal from 12GeV protons \rightarrow insensitive to $p_{\pi} < 2$ GeV ($E_{\nu} < 1$ GeV)

Front NeutrinoDetector(FD)

Purpose

- 1. V_{μ} absolute flux
- 2. v_{μ} directrion(profile)
- 3. v_e contamination

1kt water Cherenkov detector

Scintillation Fiber Tracker(SFT): SF sheets+water(6cm)

Electromagnetic calorimeter : lead glass

Muon rande detector (MRD) : drift chamber+iron plates

Far Detector

Super-Kamiokande @Kamioka (250km from KEK)

- 1000m underground @ Kamioka
- $\sim 40 \mathrm{m}^{\phi}$, $\sim 40 \mathrm{m}$ high
- 50,000t Pure water as target
- 11146 PMTs in inner tank
- 22.5kt Fiducial Volume
- Outer detector (OD) :active VETO

Delivered Beam

- Design Proton Int. 6x10¹² protons/pulse almost achieved (5.5x10¹²)
- $\sim 2.6 \times 10^{19}$ POT delivered by the end of Jun. '00
- SK Live = 2.29x10¹⁹ POT(Jun99-Jun00)

Stability of Profile Center (Fe event)

Stable within ± 1 mrad.

Stability of Spectrum

Stable within stat. error

Expected # of SK events from 1kt detector

$$N_{SK}^{\exp} = \frac{N_{kt}^{\text{obs}}}{\varepsilon_{kt}} \cdot \boldsymbol{R} \cdot \varepsilon_{SK}$$

$$R = \frac{L_{SK}}{L_{kt}} \cdot \frac{M_{SK}}{M_{kt}} \cdot \frac{\int \Phi_{SK}(E_{\nu}) \cdot \sigma_{H_{2}O}(E_{\nu}) dE}{\int \Phi_{kt}(E_{\nu}) \cdot \sigma_{H_{2}O}(E_{\nu}) dE}$$

$N_{SK}^{\exp} = 37.8 \pm 0.2 (\text{stat.})_{-3.8}^{+3.5} (\text{syst.})$

c.f.: $N_{SK}^{exp} = 41.0_{-6.6}^{+6.0}$ (tot.) from Fe events : $N_{SK}^{exp} = 37.2_{-5.0}^{+4.6}$ (tot.) from SFT events

Consistent with each other.

Systematic Error for N_{SK}

$N_{SK}^{\exp} = 37.8 \pm 0.2 (\text{stat.})_{-3.8}^{+3.5} (\text{syst.})$

Near/Far Ratio	$^{+6}_{-7}$ %
1 kt Δ V/V	$\pm 4\%$
Multi Event	$\pm 3\%$
Spectrum(eff.)	±2%
SK(mainly $\Delta V/V$)	±3%
Total	$^{+9}_{-10}$ %

of observed and expected events @ SK

	Obs.	No Ocsi.
FC 22.5kt	28	$\begin{array}{c} 37.8 \begin{array}{c} +3.5 \\ -3.8 \end{array} \\ (25) \end{array}$
1-ring	15	$22.7{\pm}3.2$
$\mu ext{-like}$	14	(13) 20.8 ± 3.2 (12)
e-like	1	$1.9{\pm}0.4$
${\substack{ ext{multi}\ ext{ring}}}$	13	(1.6) 15.1 ± 2.5 (11)

(): w/ osc. $\Delta m^2 = 3x10^{-3} eV^2$ Preliminary

Vµ→ Vx disappearance
Vµ→ Ve appearance
NC measurement

JHF Neutrino Working Group

ICRR/Tokyo-KEK-Kobe-Kyoto-Tohoku-TRIUMF

Y. Itow, T. Kajita, K. Kaneyuki, M. Shiozawa, Y. Totsuka (ICRR/Tokyo)

Y. Hayato, T. Ishii, T. Kobayashi, T. Maruyama, K. Nakamura,

Y. Obayashi, M. Sakuda (KEK)

S. Aoki, T.Hara, A. Suzuki (Kobe)

T. Nakaya, K. Nishikawa (Kyoto)

T. Hasegawa, K. Ishihara, A. Suzuki (Tohoku)

A.Konaka (TRIUMF, CANADA)

Dec.99: Working group formed. Mar.00: Letter of Intent prepared (http://neutrino.kek.jp/jhfnu) Now : Working to prepare a proposal

Physics motivation

1. Test our current picture of 3 flavor neutrino oscillation

- Spectrum shape of V_{μ} disappearance
 - Test exotic models (decay, extra dimensions,....)
- Appearance of v_e at the same Δm^2 as v_{μ} disappearance
- NC measurements
 - No additional "neutrino"?

2. Precise measurement of Δm^2 and mixing angles (θ_{23}, θ_{13})

- mixing matrix in quark sector: well known
- understanding of mixing in lepton sector
- understanding of mass structure
 - \rightarrow hints on physics beyond the SM (GUTs,...)
- 3. Discovery of V_e appearance

 \rightarrow Open possibility to detect CPV effect in lepton sector

JHF project and neutrino beam line

High intensity low energy ν beam

• Conventional ν_{μ} beam using horns

Wide band beam (similar to K2K, NUMI, CNGS)

Three v beams

Wide Band Beam Intense ~4200int/22.5kt/yr

Narrow Band Beam
 ~830int/22.5kt/yr
 (2GeV/c π)
 well understood beam
 from monochromatic π

Off Axis Beam

~2200int/22.5kt/yr(2deg) intense narrow band option High energy tail

v_{μ} disappearance

1ring FC μ **-like**

Ratio after BG subtraction

Fit with $1-\sin^2 2\theta \cdot \sin^2(1.27\Delta m^2 L/E)$

5 years precision

NBB-3GeV π , OAB-2degree, NBB-1.5GeV π

v_e appearance

Dashed lines: MINOS Ph2le, Ph2me, Ph2he from right (A.Para, hep-ph/0005012)

Summary

K2K

- 2.29x10¹⁹POT @ SK from Jun '99 to Jun '00
- Neutrino beam is well under control
 - Direction: within 1mrad
 - Spectrum: stable within stat. error
 - ➢ Intensity: stable within stat. error
 - ➢ Pi mon proved MC spectra ratio
- # of fully contained events in fiducial volume @ SK

Observed: 28

- Expected: $37.8^{+3.5}_{-3.8}$ (w/o osc.)
- Experiment resumed Jan. 2001

JHF

- Low energy conventional v_{μ} beam w/ MW 50GeV PS
- SK as far detector at *L*=295km
- E_{v} tuned at osc. max.
- Great precision thanks to high intensity & large det.

 $\checkmark \delta \sin^2 2\theta_{23} \thicksim 0.01$

- ✓ $\delta\Delta m_{23}^2$ < 1 × 10⁻⁴eV²
- ✓ $sin^2 2\theta_{13}$ ~ 5 × 10⁻³ (90% CL)
- \checkmark v_s existence can be tested
- Design and R&D work have just been started.
- Expect data taking in 2006-7