1

Results in K2K and future

Takashi Kobayashi

for K2K collaboration

IPNS, KEK

Contents

- 1. Introduction
- 2. Latest results (hep-ex/0212007, PRL90(2003)041801)
- 3. Future
- 4. Summary

1. Introduction

First accelerator based long baseline experiment
Sinsitive @ atm v Δm^2 region

Signature of vµ disappearance ➤ Reduction of # of events ➤ Spectrum shape distortion

Near Detectors (ND)

300m downstream from the target

Beam monitoring (intensity, direction) + Spectrum measurement

Analysis strategy in K2K

Measure norm. & spectrum by near detector 1kt detector for norm. (small syst.) ν int. 1kt/FGD for spectrum (new!) Extrapolate them to SK Correct near-far spectrum difference In-situ meas. of pion dist. (PIMON) \rightarrow far near ratio for >1GeV MC tuned with previous data for <1GeV</p> Compare exp'ed # of events/spectrum w/ observation maximum likelihood method v int. # of events Spectrum shpae

CC Quasi Elastic(QE) and Other Processes(nQE)

Used Parameters MA(QE)=1.11GeV MA(1π)=1.21 GeV Coherent π : Marteau et.al. Multi- π : use hep-ex/0203009

Checked MA(QE)=1.01-1.11 MA(1p)=1.01-1.51 GRV94-Mod.GRV94

Very small effect on oscillation anlysis

Spectrum Measurements @ ND

- <u>**1KT</u>** : P_u < 1.5 GeV/c, 4π acceptance</u>
 - 1-ring μ-like(1Rμ) fully contained in Fid.25ton(FC) : 22,476ev.
- <u>SciFi</u> : P_{μ} >1GeV/c, θ_{μ} <60deg.
 - 1-track μ-like : 5963ev.
 - 2-track QE-like ($\Delta \theta_{p}$ <25deg.) : 764ev. ⁰-1 -0.8 -0.6 -0.4
 - 2-track nonQE-like ($\Delta \theta_p$ >30deg.) : 1288ev.
- <u>PIMON</u>
 - π (p,θ) distribution ⇒ Neutrino Spectrum (>1GeV)

Fitting Parameters

 E_v : 8 bins, nonQE/QE ratio : 1

(+ normalization, detector systematic parameters)

Results of Fitting : Spectrum@KEK

Near2far extrapolation

Oscillation analysis (likelihood)

$$L_{tot} = L_{norm}(f) \cdot L_{shape}(f) \cdot L_{syst}(f)$$

Normalization term

$$L_{norm} = Poisson(N_{obs}, N_{exp}(f))$$

Shape term for FCFV 1Rµ

$$L_{shape} \equiv \prod_{i=1}^{29} P((f_{Esk} \cdot E_i), \Delta m^2, \sin^2 2\theta, f)$$

Systematic error constraint term

$$L_{syst} = \exp\left(-\Delta f_{\Phi,nQE}^{T} \cdot M_{FD}^{-1} \cdot \Delta f_{\Phi,nQE} / 2\right) \bullet \bullet \bullet \bullet \bullet$$
$$\times \exp\left(-f_{n6}^{2} / 2\sigma_{n6}^{2}\right) \exp\left(-f_{n11}^{2} / 2\sigma_{n11}^{2}\right) \exp\left(-\Delta f_{Esk}^{2} / 2\sigma_{Esk}^{2}\right)$$

Parameters w/ syst. error

$$f = (f_{\Phi}, f_{nQE}, f_{F/N}, f_{ESk}, f_{ESk}, f_{n6}, f_{n11})$$

- f_{ϕ} : Flux (8 energy bins)
- **f**_{nQE} : **QE**/**nQE** ratio
- **f**_{F/N} : Far/Near ratio
- f_{εSK} : SK reconstruction (Fid, PID, Nring)
- **f**_{ESK} : SK energy scale
- f_{n6} : Norm. for June 99
- **f**_{n11} : Norm. Nov 99 ~ Jul 01

Data set for oscillation analysis

Total number of events Fully contained (FC) in fid. Vol., Evis>30MeV Jun.99~July 01 **56** events observed E^{rec} spec. shape ■ FC 1Rµ events Nov.99~July 01 29 events observed

Expected # of events @ SK w/o oscillation

$$N_{\exp} = N_{KT}^{obs} \cdot \frac{N_{SK}^{MC}}{N_{KT}^{MC}} = N_{KT}^{obs} \cdot \frac{\sum_{i,j} f_{\Phi i} f_{F/Ni} \cdot \Phi_{SK}^{MC}(E_i) \cdot (f_j \sigma_{ij}) \cdot \mathcal{E}_{ij}^{SK}}{\sum_{i,j} f_{\Phi i} \cdot \Phi_{KT}^{MC}(E_i) \cdot (f_j \sigma_{ij}) \cdot \mathcal{E}_{ij}^{KT}}$$

Best fit point $(\sin^2 2\theta, \Delta m^2)$ $= (1.0, 2.8 \times 10^{-3} eV^2)$

KS test (shape):79%

for N_{SK} 56ev obs. / 54ev exp.

> Both Shape & N_{SK} agree with best fit expectation

Results of oscillation analysis

consistent with SK atmospheric v results

- $\Delta log(likelihood)$ distribution

Shape & N_{SK} indicate consistent Δm^2 region

Acc., beam line (incl. target/horn), ND, SK working well!!

Expected sensitivity @ 10²⁰POT

Future

 v_{μ} disappearance Increase statistics ■ Take data more!! 10²⁰POT in total at least Decrease syst. error ■ HARP (hadr. prod. exp. @ CERN) data analysis → far/near ratio • Vertex reconstruction \rightarrow norm. error. Improve analysis Add other quantities sensitive to v osc. IR/mR, mR "spectrum", (PC, (in coming)...) \rightarrow Study on neutrino interactions 1kt, Scifi, New SciBar detector v_{e} appearance

4. K2K Upgrade (SciBar detector)

•L=250km, $\Delta m^2 = 3 \times 10^{-3}$ Ev ~ 0.6GeV

Study LE v int. to maximize K2K sensitivity

–QE, single/multi π production,...

•Full Active (solid) Scintillator Tracker

- High efficiency for a short (<4cm) track.
- Detect a proton down to 350 MeV/c.
- PID (p/π) and the momentum
- measurement by dE/dx.

Photodetector (MA-PMT)

Wavelength

Shifting Fiber

Extruded

Scintillator

Construction of SciBar

Layer module construction

First 4 layer modules Installed!! In Jan.2003

Installation of remaining part in summer 2003

Summary

• K2K observed indication of v oscillation($v_{\mu} \rightarrow v_{\chi}$) decrease in total number of events ■ 80.1 $^{+6.2}_{-5.4}$ exp'ed \rightarrow 56 observed. distortion of spectrum \square null oscillation probability < 1% ■ allowed region: $1.5 \sim 3.9 \times 10^{-3} \text{ eV}^2$ @ $\sin^2 2\theta = 1(90\% \text{ CL})$ consistent w/ atmospheric neutrino observation K2K-II started on Dec.21, 2002 Part of SciBar detector is installed. Full detector installation this summer plan to accumulate at least 10²⁰POT