Toward discovery of θ_{13} and the CPV

Takashi Kobayashi IPNS, KEK

Contents

- 1. Introduction
- 2. Accelerator based projects
 - "Present" experiments
 - T2K (1st & 2nd phase) in Japan
 - Projects in US
 - Projects in Europe
- 3. Reactor experiments for θ_{13}
- 4. Summary

Introduction

Evidences of v oscillation

- Atm v (SK,1998), confirmed by K2K (2004)
- Solar v (SK+SNO,2001), confirmed by KamLAND (2002, 2004)
- Finite masses!! & Large mixings!!!!! Very much different from quarks
- First evidence beyond SM

Next steps

- Understand whole structure of ν mass/mixing
- How similar/different from quark sector?
 - "Standard" mixing w/ 3x3 matrix?
 - Mass hierarchy?
 - CP violation?

Would lead physics beyond SM

- Next generation LBL experiments and reactor exp.
 - w/ High statistics and small systematics

New era of precision "Neutrino Flavor Physics"

- Cf. Have been done last ~40yrs for quark sector

3 flavor mixing

$$\left| \mathcal{V}_{l} \right\rangle = \Sigma U_{li} \left| \mathcal{V}_{i} \right\rangle$$
 m_i: 3 masses,
Weak Mass eigenstates

Maki-Nakagawa-Sakata Matrix $(s_{ij}=\sin\theta_{ij}, c_{ij}=\cos\theta_{ij})$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix}$$

Parameters governing oscillation

- 3 mixing angles (θ_{12} , θ_{23} , θ_{13})
- 1 CPV phase (δ)
- 2 (indep.) mass differences $(\Delta m_{ij} = m_i^2 m_j^2)$

Oscillation probabilities
when
$$\begin{cases} \Delta m_{12}^{2} \ll \Delta m_{23}^{2} \approx \Delta m_{13}^{2} \\ E_{\nu/L} \approx \Delta m_{23}^{2} \end{cases}$$
 contribution from Δm_{12} is small
(No CPV & matter eff. approx.)
 ν_{μ} disappearance (LBL/Atm) $\implies \theta_{23}$ and Δm_{23}^{2}
 $P_{\mu \to x} \approx 1 - \cos^{4} \theta_{13} \cdot \sin^{2} 2\theta_{23} \cdot \sin^{2} (1.27\Delta m_{23}^{2}L/E_{\nu})$
 ν_{e} appearance (LBL/Atm) $\implies \theta_{13}$ and Δm_{13}^{2}
 $P_{\mu \to e} \approx \sin^{2} \theta_{23} \cdot \sin^{2} 2\theta_{13} \cdot \sin^{2} (1.27\Delta m_{13}^{2}L/E_{\nu})$
 ν_{e} disappearance (Reactor) \implies Pure θ_{13} and Δm_{13}^{2}
 $P_{e \to x} \approx 1 - \sin^{2} 2\theta_{13} \cdot \sin^{2} (1.27\Delta m_{13}^{2}L/E_{\nu})$
 $\sum_{k=0.5}^{k} e^{k} - \sin^{2} 2\theta_{13} \cdot \sin^{2} (1.27\Delta m_{13}^{2}L/E_{\nu})$

Results from atm & acc. v_{μ} disapp.(θ_{23} , Δm_{23}^2)

Results from solar(v_e **) & reactor(** \overline{v}_e **) (** θ_{12} , Δm_{12}^2 **)**

- Solar neutrino observations
 - SK, SNO
 - $\nu_e \rightarrow \nu_\mu, \nu_\tau$
- KamLAND
 - Reactor \overline{v}_e disappearance
 - Few MeV x ~200km

Global (solar+KamLAND) Best fit $sin^2\theta_{sol} = 0.29 (\theta_{sol}=32.6^{\circ})$ $\Delta m_{sol}^2 = 8.1x10^{-5}eV^2$

3 σ region: 0.23< $\sin^2\theta_{sol}$ <0.37 (28.7°< θ_{sol} <37.5°) Δm_{sol}^2 =7.3~9.1x10⁻⁵eV² T.Kobayashi (KEK)

Latest constraint on θ_{13}

Present knowledge and What's next?

- Only unknown mixing θ_{13} (and really $\Delta m_{13}^2 \sim \Delta m_{23}^2$?)
- Mass hierarchy (sign of Δm^2)
- CPV
- Approaches
 - LBL experiment: Multi purpose (θ_{13} , sign(Δm^2),CPV, θ_{23} , Δm_{23}^2)
 - Reactor-based $\overline{\nu}_{e}$ disappearance: single purpose (θ_{13}), complementary

T.Kobayashi (KEK)

$v_{\mu} \rightarrow v_{e}$ appearance and CPV

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4C_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \quad \text{Main} \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \quad \text{CP-odd} \\ &+ 4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \quad \text{Solar} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \quad \text{Matter} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \quad \text{Matter} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \quad \text{Matter} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \quad \text{Matter} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \quad \text{Matter} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \quad \text{Matter} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\frac{aL}{4E}\left(1 - 2S_{13}^{2}\right) \\ &- 8C_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^{2}S_{13}^$$

$$A_{CP} \equiv \frac{P - \overline{P}}{P + \overline{P}} \approx \frac{\Delta m_{12}^2 L}{E} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

$$N(v_e) \propto \sin^2 2\theta_{13} ; A_{CP} \propto \frac{1}{\sin \theta_{13}}$$

Size of θ_{13} critical !

T.Kobayashi (KEK)

CPV vs matter effect

 $@sin^{2}2\theta_{13}=0.01$

Smaller distance/lower energy \rightarrow small matter effect Pure CPV & Less sensitivity on sign of Δm^2 Combination of diff. E&L help to solve.

T.Kobayashi (KEK)

T2K experiment (approved & start in 2009) Long baseline neutrino oscillation experiment from Tokai to Kamioka. Sendai beam $\sim 1 \text{GeV}$ Super-K: 50 kton **J-PARC Water Cherenkov** of K2K 0.75MW 50GeV PS Super Kamiokande / 295km JAÉRI Kami (Tokai) Гokai KEK Phase2: **Phase2: Mton** Tokyo 🚽 Gifu Kanasaki Nagoya **MW** ? **Hyper-K**? Kuete Yokohama <u>Osaka</u>

Physics motivations

- Discovery of $V_{\mu \rightarrow} V_e$ appearance
- •Precise meas. of disappearance $\nu_{\mu \rightarrow} \nu_{\textbf{X}}$
- Discovery of CP violation (Phase2)

T.Kobayashi (KEK)

Japan Proton Accelerator Research Complex (J-PARC)

JAERI Tokai-site

February, 2004

JAERI: Japan Atomic Energy Research Institute

J-PARC Neutrino facility Approved in Dec. 2003 for 5 years construction (2004~2008JFY)

Components

- Primary proton beam line
 - Superconducting combined function
- Target/Horn system
- Decay volume (130m)
- **Beam dump**
- **Muon monitor**
- **Near neutrino detector (280m)**
- Second near neutrino detector (~2km): not approved yet

Off Axis Beam (Ref: BNL-E889 Proposal)

R&D and construction of components

(1st) Horn inner conductor prototype

Superconducting combined function magnet

Prototype Coil Winding

$\begin{array}{c} \textbf{Detector complex} \\ \hline p & \pi & \hline p & \hline p$

- Muon monitors @ ~140m
 - Fast (spill-by-spill) monitoring of beam direction/intensity

First Front detector @280m

- Intensity, Direction,
 Spectrum, v interaction
- Second Front Detector @ ~2km (not approved)
- Far detector @ 295km
 Super-Kamiokande (50kt)

Near Detector @280m

θ_{13} measurement in T2K(-I) (v_e appearance search)

P(vµ-ve) = $sin^2\theta_{23} sin^22\theta_{13} sin^2(1.27 \Delta m_{23}^2L/E)$ (@ Δm^2 =2~3x10⁻³) signature: CC QE event (v_e+n→p+e) 1ring e-like event

BG:

beam v_e contamination (0.4% of $v\mu$) mis-reconstructed π^0 event in non-QE events (v_e +X \rightarrow v_e (e)+ π^0 +X')

 $sin^22\theta_{23}$ =1, δ =0 are assumed.

π^0 rejection

Μγγ

(OA 2.5deg, 50GeV 5yr)₂3

T.Kobayashi (KEK)

T2K 2nd phase for CPV: 4MW-PS & Hyper-K

0.75MW→4MW

- Rep. rate x 2.5
 - Double RF cavities (space OK)
 - Eliminate idling time in acc. cycle
- Double # of circulating protons
 - "barrier bucket method" to avoid space charge limit
- Issues
 - Achieve first goal (0.75MW)
 - Beam loss
 - Target,...
 - (these apply also for other projects)

1Mt "Hyper-Kamiokande

2 detectors \times 48m \times 50m \times 250m, Total mass = 1 Mton

~T2K-I x 100 stat

Sensitivity for Mixing Angle

CPV measurements

- Measure ν_e app. for both ν_μ and $\overline{\nu}_\mu$ beam
- Take asymmetry

$$A_{CP} \equiv \frac{P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})} \approx \frac{\Delta m_{12}^{2}L}{E} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

\overline{v} / v CC interaction spectrum for CPV meas.

	signal		background				
	δ =0	δ=π/2	total	ν_{μ}	ν_{μ}	ν _e	ν _e
$\nu_{\mu} \rightarrow \nu_{e}$	536	229	913	370	66	450	26
$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$	536	790	1782	399	657	297	430

T.Kobayashi (KEK)

 3σ Sensitivity for CPV in T2K-II

 3σ CP sensitivity : $|\delta|$ >20° for sin²2 θ_{13} >0.01 with 2% syst.

T.Kobayashi (KEK)

NOv**A**

- Use "existing" NuMI beamline (2005~) for MINOS
- New 50kt fine grained detector @~810km and @ 12km off axis
- Liq scint. tracker & particle board absorber (1/3X₀)
- 540k channel readout
- (Alternative:full active liq.sci.)
- Possible future upgrade of MI (0.4MW→2MW):Proton driver
- Proposed. (2008?~)

Assuming $\Delta m^2 = 2.5 \times 10^{-3} eV^2$ Messier, v2004

T.Kobayashi (KEK)

NOvA Physics Reach

Another possibility with PD

Europe: SPL→Frejus

- 4MW 2.2GeV Superconducting Proton Linac (SPL) @ CERN
- Low energy wide band (Ev~0.3GeV)
- L=130km
- Water Cherenkov 40→ 400kt (UNO)
- ~18,000 vμ CC/year/400kt θ₁₃, CPV
- Small matter effect
- SPL in R&D, UNO in conceptual design
 - UNO Detector Conceptual Design

10%

Only optical

separation

- A Water Cherenkov Detector
- optimized for:
- Light attenuation length limit
- PMT pressure limit
- Cost (built-in staging)

60x60x60m³x3 Total Vol: 650 kton Fid. Vol: 440 kton (20xSuperK) # of 20" PMTs: 56,000 # of 8" PMTs: 14,900

BNL-Homestake

- 28GeV AGS upgrade to 1MW (2MW) cf current 0.1MW
- Wide band beam (0.5~6GeV)
- L=2,540km
- Mton detector
- ~13,000 v_{μ} CC/year/500kt
- Cover higher osc. maxima

Goals

 v_e appearance

- Sign of Δm_{23}
- CPV

 θ_{12} , Δm_{12}

Possible w/ only v run at certain parameter region

• LOI written.

T.Kobayashi (KEK)

Brookhaven to Homestake Physics Reach

Even with only v data, CP violation and mass hierarchy are visible in some regions of parameter space.

But with both v and \overline{v} running, CP precision much higher

Reactor \overline{v}_e disappearance

 \overline{v}_{e} from nuclear reactor <E>~3MeV

1-P(v_e \rightarrow v_e) = sin²(2 θ_{13})sin²($\Delta m^2_{31}L/4E$) + O($\Delta m^2_{21}/\Delta m^2_{31}$) : pure θ_{13}

Small systematic error (<1%) required

Identical near det @ O(100)m & far det @a few km

Complementarity of Reactor-Accelerator Meas.

Reactor Experiment Proposals

Double-CHOOZ

- Twin reactor cores
 - P=2x4.2 GWth
- Two 10 tons detectors
 - 80% dodecane + 20% PXE + 0.1% Gd
 - Near: 100-200 m 60-80 mwe
 - Far: 1.05 km 300 mwe
- 3 years Sensitivity
 - 0.6% systematics
 - No signal: sin²(2θ₁₃) < 0.02-03 (90% C.L.)
 - Signal: $\sin^2(2\theta_{13}) > 0.04-05 (3\sigma)$
- Prospect (approved & funded in France)
 - 2007: far detector running
 - 2008: near detector running
 - Cost ~7Meuros + civil constr.

Summary

- Neutrino oscillation established
 - − Atm v/K2K → θ_{23} , Δm_{23}^2
 - − Solar/KamLAND → θ_{12} , Δm_{12}^2
- Next important issues
 - Discovery and measurement of only unknown mixing θ_{13}
 - Mass hierarchy
 - CP violation
- Future LBL exp's have good chance to achieve the goals
 - T2K using J-PARC and SK started construction. Start exp. In 2009 θ_{13} sensitivity ~0.007 (90%CL)
 - $|\delta|$ ~20deg in phase 2
 - NOvA proposal w/ similar potential to T2K
- Pure θ_{13} measurements by reactor experiments
 - complementary to disentangle parameter relations θ_{13} sensitivity 0.01~0.03 (90%)
 - Systematic error (<1%) is key issue
 - Double-CHOOZ is partially approved
- Neutrino will continue to be exciting for coming decades 41