Lomonosov 11 @ Moscow Aug. 23

Long baseline (LBL) neutrino experiments

Takashi Kobayashi Institute for Particle and Nuclear Studies (IPNS) High Energy Accelerator Research Organization (KEK) Tukuba, Japan

Contents

- Introduction
- 1st generation LBL experiments
 - ✤ K2K
 - vµ disappearance
 - New result on ve appearance
 - Coming soon (MINOS, ICARUS, OPERA)
- Future projects
- Summary

Introduction

- Evidences of v oscillation in atm v & solar v
 - Finite masses
 - Large mixings!
 - New era of "neutrino flavor physics!!"
- Still many mysteries in neutrino physics
 - Why so light?
 - Why so differently mix from quark sector?
 - How many (sterile) neutrinos?
 - Absolute mass?/ hierarchy?
 - Majorana? Dirac?
 - ✤ CPV?
 - Almost "unknown" compared w/ quarks
- Understanding properties of neutrino will provide clue toward physics beyond the standard model
 - ✤ GUT (Seesaw model,..)
 - Leptogenesis
 - Extra dimensions....

• Full exploration of whole structure of neutrino masses and mixing is a critical step

Neutrino mixing

If neutrino have finite mass, weak and mass eigenstates can differ

 $|\nu_l\rangle = \Sigma U_{li}|\nu_i\rangle$ m_i : 3 masses, Δm_{ij} : 2 differences Weak Mass eigenstates

Maki-Nakagawa-Sakata Matrix $s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$

Neutrino oscillation

$$\delta: \mathcal{CP} \text{ in } v_e \text{ appearance}$$

$$A_{CP} = \frac{P(v_{\mu} \to v_e) - P(v_{\mu} \to v_e)}{P(v_{\mu} \to v_e) + P(v_{\mu} \to v_e)} \approx \frac{\Delta m_{12}^2}{4E_v} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

The 11th Lomonosov Conference on Elementary Particle Physics, Moscow, Aug. 21-27, 2003

1st generation LBL experiments

-- Confirmation atm v resutls –
w/ well controlled systematics
Known distance
Known direction
Known (measurable) flavor content, spectrum

K2K experiment (since 1999) First long baseline (250km) neutrino experiment.

MUMON

- ♦ 12GeV PS
- Pure νμ beam (99%)
 w/ <Ev>~1.3GeV
- 50kt Water Ч (Super-Kamiokande)
- vµ disappearance and ve appearance

Target+Horn

Pion monitor (PIMON)

Delivered protons on target (POT)

Plan to accumulate **10²⁰** analyzed POT

The 11th Lomonosov Conference on Elementary Particle Physics, Moscow, Aug. 21-27, 200

v_{μ} disappearance

PRL90(2003)041801

best fit expectation

Constraint on osc. parameters

The first v_e appearance search in K2K

Background estimation

$N_{BG}^{ve} = 0.35 \pm 0.11 \text{ evts}$ $v_{\rm e}/v_{\rm u}$ from beam MC Beam MC confirmed by ND v_e meas. $N_{BG}^{\nu\mu} = 2.0 \pm 0.6 \text{ evts}$ (w/o oscillations) Dominated by NC π^0 (87%) Constraint on NC cross-section 1kt $\pi^0/(1$ -ring μ) ratio measurement π^0 ~85%NC, 1R-µ:~100%CC → NC/CC 700 1kton π^0 sample 600 500 400 300 200 100 00 150 50 100 200 250 300

syst. err. in v_{μ} BG							
KT (~fid. vol.)	±4.4%						
SK (~fid. vol.)	$\pm 3.0\%$						
Ring count	+15% -13%						
PID	+10% -11%						
Far/Near	(±5.8%)						
Spectrum	(+8.7%) (-9.4%)						
NC/CC	(+22%) (-23%)						

Major sources of

11

The first accelerator-based v_e (not anti- v_e) appearance search around $10^{-(3\sim2)}eV^2$ region!!

K2K resumed.

.Kobayashi (KEK)

The 11th Lomonosov Conference on Elementary Particle Physics, Moscow, Aug. 21-27, 2003

13

K2K Upgrade (SciBar detector)

All scintillator installation finished

	TO A DECK OF THE REAL PROPERTY													
11-1	6/22	6/23	6/30	7/7	7/14 7/21	7/2	8.1	8/4	8/11	8/18	8/25	9/1	9/8	9/15
100	beam		1		and the second		977	an.				S/		
124 137	end		1	6150	Carlo -			the-						
e-calorimeter				111			111 111				////			
Layer													1	3
Fiber, PMT, FEE	3													
comissioning														

MINOS

- FNAL 120GeV Main Injector (0.4MW) \rightarrow Soudan mine (735km)
- - Horn-focused wide band v_{μ} beam v_{μ} CC int./MINOS/yr ~ 2,500 (LE beam)
- (magnetized)Iron-scintillator sampling calorimeter
 - 5,400tons @ far, 980tons @ near
 - 55%/ \sqrt{E} for hadrons
 - $23\%/\sqrt{E}$ for electrons
- v_{μ} disappearance
 - Oscillatory behavior
 - Precise determination of Δm_{23}^2 , θ_{23} *
- Start from 2005
 - Far detector completed July 10, 2003 •••
 - First proton on target Dec., 2004 *

CERN neutrino to Gran Sasso (CNGS)

- CERN 400GeV SPS → Gran Sasso (732km)
- v_{τ} appearance (+ v_{e} appearance)
- $6.8 x 10^{19} POT/yr$ (x1.5 granted)
- Wide band v_{μ} beam $< E_{\nu} > \sim 17 \text{GeV}$
 - \sim 5500 v_{μ} event/kt/yr

First beam to GS May 2006

- Underground civil const. finished Jun.20,2003
- Beam dump installation going
- Two experiments
 - OPERA
 - ICARUS

Detectors for CNGS

OPERA

- τ identification by decay topology (kink)
- ECC (Emulsion Cloud Chamber)
 - Proven by DONUT experiment
 - **1.7kton** of ECC
 - ✤ 206,336 bricks
- Spectrometer (electronic tracker + 1.6T dipole)

ICARUS

- t identification by kinematic var. dist.
- **3kton** Liq Ar TPC

74 cm

wire coordinate

rift coordinate

- Constructed & proved performances of 300ton module at Pavia
- Installation of T600 module to Gran Sasso recommended
- Construction of 3kton by the CNGS beam (2006)

T300 data

Run 308 Event 332 Collection view

173 cm

T.Kobayashi (KEK

The 11th Lomonosov Conference on Elementary Particle Physics, Moscow, Aug. 21-27, 2003

Expected # of v_{τ} evts in 5yrs

	C			
•	TU	m	X	na
				. · · · · ·

OPERA Δm^2 signal signal signal Back (x 10⁻³eV²) 1.8 2.5 **4.0** 17.2 1.06* **Final Design** 9.0 43.8 With possible 19.8 10.3 50.4 0.67 improvements**

* : 40% from charm

**: Changeable Sheet (+15% eff.), dE/dx (charm reduction by 40%)

ICARUS (T3000) 1.5 kton fiducial

	Signal	Signal	Signal	Signal	
au decay mode	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$	$\Delta m^2 =$	BG
	$1.6 imes 10^{-3}~{ m eV^2}$	$2.5 \times 10^{-3} \ \mathrm{eV^2}$	$3.0 imes10^{-3}~{ m eV^2}$	$4.0 imes10^{-3}~{ m eV^2}$	
$\tau \rightarrow c$	3.7	9	13	23	0.7
$\tau \to \rho \text{ DIS}$	0.6	1.5	2.2	3.9	< 0.1
$\tau \to \rho \ \mathrm{QE}$	0.6	14	2.0	3.6	< 0.1
Total	4.9	11.9	17.2	30.5	0.7

Goals of next generation LBL experiments

• Establish 3 flavor framework (or find something new)

- * Discovery of v_e appearance ($\theta_{13} > 0$?)
 - At the same Δm^2 as v_{μ} disapp. \rightarrow Firm evidence of 3gen. mix.
 - Open possibility to search for CPV
- * Precision measurements of ocs. params.
 - $\Delta m_{23}, \theta_{23}/\Delta m_{13}, \theta_{13}$
 - Test exotic models (decay, extra dimensions,....)
- Sign of Δm^2
- Search for CPV in lepton sector

Give hint on Matter/Anti-matter asymmetry in the universe

Smaller distance/lower energy \rightarrow small matter effect Pure CPV & Less sensitivity on sign of Δm^2 Combination of diff. E&L help to solve.

J-PARC-Kamioka project

 Phase-I (0.75MW + Super-Kamiokande)
 2007(8)~

 Phase-II (4MW+Hyper-K) ~ Phase-I × 200
 201x?~

100

10

E,, GeV

NuMI-OA (off_axis) 6 8

• Goal:

- v_e appearance,
- precision measurements
- ✤ CPV
- Use same beam line w/ MINOS
 Can run w/ MINOS at the same time
- Several possible site 700~950km
- Several detector options
 - Low Z, fine grained
 - ✤ >50kton, 400k channels
 - Solid/liquid scintillator, glass RPSs, (Liq.Ar TPC)

Staging

- phaseI :50kt, 4x10²⁰POT/yr, 2008~
- phaseII: 25 x (kt.pot in phaseI), 2014~, v & anti-v

• Complementary w/ J-PARC v

* Different L, $Ev \rightarrow$ diff. matter eff.

A. Para, M. Szleper, hep-ex/0110032

Sensitivities

J-PARC: w/ beam MC sim, & full SK det. sim.

CPV sensitivity (3σ) at J-PARC

JHF-HK CPV Sensitivity

3σ CP sensitivity : $|\delta|$ >20° for sin²2 θ_{13} >0.01 with 2% syst.

(Ref: Diwan et al., PRD68, 012002, 2003)

BNL v project

Goals

- Precision measurement
- v_e appearance
- θ_{12} , Δm_{12}
- Sign of Δm_{23}
- ✤ CPV
- 28GeV upgraded AGS (1MW)
- Conventional horn-focused wide band beam
- 500kt water Cherenkov @ Homestake (2540km)

 ν_{μ} **DISAPPEARANCE**

The 11th Lononosov Conference on Elementary Particle Physics, Moscow Reconstructed v Energy (GeV)

Sensitivities of BNL-v project

Europe: SPL→Furejus

- 4MW Super Proton Linac (SPL) @ CERN
- SuperBeam/Beta beam
- Water Cherenkov

LAUSANNE

SPL Super/Beta beam sensitivities

SUPER BEAM + BETA BEAM

Neutrino factory

Sensitivities of vFact

vFact could extend sensitivities dramatically, but first need to establish component technologies one by one

T.Kobayashi (KEK)

"he 11th Lomonosov Conference on Elementary Particle Physics, Moscow, Aug. 21-27, 2003

Possible time line

 Near future (within 2~3years) ✤ 1st phase experiments • Final results from K2K (2005) MINOS(2005)/CNGS(2006) ♦ Medium near future (4~10yrs?) * NuMI-OA (2008?~) Future (10~15years) w/ Mton detectors ✤ J-PARC – HyperK (2013?~) ✤ BNL v SPL (Beta beam?) -- Furejus (Mton) ◆ Far future (>20~30yrs) Neutrino factory

Summary

- ◆ K2K: The first (only running) LBL experiments
 - Established methodology of LBL experiments
 - Beam direction(GPS survey..), stable operation, event selection
 - v_{μ} disappearance:
 - Osc. prob >99%, $\Delta m^2 = 1.5 \sim 3.9 \times 10^{-3} eV^2$
- **NEW** \diamond v_e appearance: $\sin^2 2\theta_{\mu e} < 0.15 @ \Delta m^2 = 2.8 \times 10^{-3} eV^2$
 - MINOS(2005), OPARA/ICARUS(2006) coming soon
 - Next generation LBL experiments
 - * Discovery/measurement of θ_{13} , δ
 - Precision measurements of oscillation parameters
 - J-PARC neutrino experiment submitted 4yrs budget request
 - The "neutrino flavor physics" have just started
 - $\boldsymbol{\ast}$ there should be plenty of enjoyable discoveries / surprises