Aug. 9, 2004 @Hanoi

1

(Present long baseline neutrino experiments and) Future Projects to measure θ₁₃ and the CP violation phase

Takashi Kobayashi IPNS, KEK

Contents

- 1. Introduction
- 2. Present LBL experiments
- 3. Future accelerator based projects
- 4. Reactor experiments
- 5. Summary

Introduction

Evidences of v oscillation

- Atm v (SK,1998) & solar v (SK+SNO,2001)
- Finite masses!! & Large mixings!!!!!
- First evidence beyond SM

Definite confirmation w/ diff systematics

- Present (1st generation) long baseline (LBL) experiments (for atm v)
- Players: K2K (1999~), MINOS (2005~), ICARUS/OPERA(2006~)

Next steps

- Understand whole structure of v mass/mixing
- How similar/different from quark sector?
 - "Standard" mixing w/ 3x3 matrix?
 - Mass hierarchy?
 - CP violation?

Would lead physics beyond SM

- Next generation LBL experiments and reactor exp.
 - w/ High statistics and small systematics

New era of precision "Neutrino Flavor Physics"

– Cf. Have been done last ~40yrs for quark sector T.Kobayashi (KEK)

The K2K (KEK-to-Kamioka) Experiment

- The first & only running LBL ν osc. Experiment (1999~)
 ν_μ beam (99%) with <E> ~ 1.3GeV w/ KEK 12GeV-PS
- Confirmation of atm ν results ν_{μ} disappearance and ν_{e} appearance

$$prob. = \sin^2 2\theta \cdot \sin^2(\frac{1.27\Delta m^2 L}{E_v})$$

Signature (vµ→else) •Reduction of # of events •Spectrum distortion

Latest Results on v_{μ} disapp.(June 2004)

K2K-I & K2K-II

8.9x10¹⁹ POT (1999Jun~2004Feb) (10²⁰POT proposed)

Comparison w/ other results

T.Kobayashi (KEK)

MINOS

- wide band ν_{μ} beam w/ FNAL 120GeV Main Injector (0.4MW)
- (magnetized)Iron-scintillator sampling calorimeter
 5,400tons @ far, 980tons @ near
 - v_{μ} CC int./MINOS/yr ~ 2,500 (LE beam)
- High precision v_{μ} disappearance
- Far detector fully operational since 2003
- Beam line almost completing
- Start from 2005

CERN Neutrino to Gran Sasso (CNGS)

- Wide band ν_μ beam w/ CERN 400GeV SPS <E_ν>~17GeV
- Two experiments
 - OPERA: 1.7kt
 Emulsion cloud
 chamber
 - ICARUS: 3kt Liq. Ar
 TPC
- ~5500 v_{μ} event/kt/yr v_{τ} appearance
- Under construction
- First beam to GS
 May 2006

3 flavor mixing

If neutrino have finite mass, weak and mass eigenstates can differ

 $|V_l\rangle = \Sigma U_{li}|V_i\rangle$ m_i : 3 masses, Δm_{ij} : 2 differences Weak Mass eigenstates

Maki-Nakagawa-Sakata Matrix $s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$

9

- Only unknown mixing θ_{13}
 - Only upper bound from CHOOZ reactor exp
 - − At the same Δm^2 as v_{μ} disapp. → Support 3gen. mix. framework
 - Open possibility to search for CPV ($\theta_{any}=0 \rightarrow No CPV$)
- Mass hierarchy (sign of Δm^2)
- CPV
- Approaches
 - LBL experiment: Multi purpose (θ_{13} , sign(Δm^2),CPV, θ_{23} , Δm_{23}^2)
 - Reactor-based \overline{v}_e disappearance: single purpose (θ_{13}), complementary

$v_{\mu} \rightarrow v_{e}$ appearance in LBL exp

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \text{ Main} \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \text{ CP-odd} \\ +4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \text{ Solar} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\left\{1 - 2S_{13}^{2}\right\} \text{ Matter} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\left\{1 - 2S_{13}^{2}\right\} \text{ Matter} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\left\{1 - 2S_{13}^{2}\right\} \text{ Matter} \\ \frac{\delta \rightarrow -\delta}{\delta}, a \rightarrow -a \text{ for } \overline{V}_{\mu} \rightarrow \overline{V}_{e} \text{ Matter eff.: } a = 7.56 \times 10^{-5} [\text{eV}^{2}] \cdot \left(\frac{\rho}{[\text{g/cm}^{3}]}\right) \cdot \left(\frac{E}{[\text{GeV}]}\right)$$

$$A_{CP} \equiv \frac{P - \overline{P}}{P + \overline{P}} \approx \frac{\Delta m_{12}^2 L}{E} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

$$N(v_e) \propto \sin^2 2\theta_{13} ; A_{CP} \propto \frac{1}{\sin \theta_{13}}$$

Size of θ_{13} critical !

T2K experiment (approved & start in 2009)

Long baseline neutrino oscillation experiment from Tokai to Kamioka.

Physics motivations

- Discovery of $\nu_{\mu \rightarrow} \nu_{e}$ appearance
- •Precise meas. of disappearance $\nu_{\mu \rightarrow} \nu_{x}$
- •Discovery of CP violation (Phase2)

Japan Proton Accelerator Research Complex (J-PARC)

J-PARC In JAERI Tokai-site

JAERI: Japan Atomic Energy Research Institute

February, 2004

J-PARC Neutrino facility Approved in Dec. 2003 for 5 years construction Primary Proton beam line (2004~2008JFY) Components

- Primary proton beam line
- >Target/Horn system
- >Decay volume (130m)
- Beam dump
- >Muon monitor
- >Near neutrino detector (280m)
- Second near neutrino detector (~2km): not approved yet

Ground breaking of v facility @ J-PARC Decay volume part • July, 2004

T2K sensitivity on v_e appearance

$sin^22\theta_{13}$	Background in Super-K (as of Oct 25, 2001)					Signal	Signal
	v_{μ}	v_{e}	\overline{v}_{μ}	\bar{v}_{e}	total	Signal	+ BG
0.1	12.0	10.7	1.7	0.5	24.9	114.6	139.5
0.01	12.0	10.7	1.7	0.5	24.9	11.5	36.4

Sensitivity for CPV in T2K-II

3σ CP sensitivity : $|\delta|$ >20° for sin²2 θ_{13} >0.01 with 2% syst.

NOvA

- Use Existing NuMI beamline
- New 50kt fine grained detector @~800km and @ 12km off axis
- Liq scint. tracker & particle board absorber (1/3X₀) (Alternative:full active liq.sci.)
- Possible future upgrade of MI (0.4MW→2MW):Proton driver
- Proposed. (2008?~)

Assuming $\Delta m^2 = 2.5 \times 10^{-3} eV^2$ Messier, v2004

NOvA Physics Reach

Mass hierarchy

Europe: SPL→Frejus

- 4MW 2.2GeV Superconducting Proton Linac (SPL) @ CERN
- Low energy wide band (Ev~0.3GeV)
- L=130km
- Water Cherenkov $40 \rightarrow 400$ kt (UNO)
- ~18,000 vµ CC/year/400kt
 - θ_{13} , CPV
- Small matter effect
 - SPL in R&D, UNO in conceptual design

UNO Detector Conceptual Design

40%

10%

A Water Cherenkov Detector

- optimized for:
- Light attenuation length limit

APS nu Study at ANL, Dec. 2003

- PMT pressure limit
- Cost (built-in staging)

Only opticalTotal Vol: 650 ktonFid. Vol: 440 kton (20xSuperK)# of 20" PMTs: 56,000separation# of 8" PMTs: 14,900

60x60x60m³x3

22

BNL-Homestake

- 28GeV AGS upgrade to 1MW (2MW) cf current 0.1MW
- Wide band beam (0.5~6GeV)
- L=2,540km
- Mton detector
- ~13,000 v_{μ} CC/year/500kt
- Cover higher osc. maxima

Goals

 ν_e appearance

- Sign of Δm_{23}
- CPV

 θ_{12} , Δm_{12}

- Possible w/ only v run at certain parameter region
- LOI written.

Brookhaven to Homestake Physics Reach

Even with only v data, CP violation and mass hierarchy are visible in some regions of parameter space.

But with both v and \overline{v} running, CP precision much higher

Reactor \overline{v}_e disappearance

 \overline{v}_{e} from nuclear reactor <E>~3MeV

1-P(v_e \rightarrow v_e) = sin²(2 θ_{13})sin²(Δ m²₃₁L/4E) + O(Δ m²₂₁/ Δ m²₃₁) : pure θ_{13}

Small systematic error (<1%) required

Identical near det @ O(100)m & far det @a few km

Complementarity of Reactor-Accelerator Meas.

Reactor Measurement= Pure $\sin^2 2\theta_{13}$ measurement * Answer to **Reactor-Accelerator combination** θ_{23} degeneracy => <u>a lot of physics potential</u> $\sin^2 \theta_{23} = \begin{cases} 0.39 \\ 0.39 \end{cases}$ J-PARC Measurement ^{0.07} * If accuracy 0.06 is good enough 0.05 \Rightarrow $|\sin \delta_l|$ 0.04 $P(V_{\mu} \rightarrow V_{e})$ 0.03 0.02 0.01 Reactor Measurement 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0

$$\sin^2 2\theta_{13}$$

Reactor experiment proposals

Double-CHOOZ

- Twin reactor cores
 P=2x4.2 GWth
- Two 10 tons detectors
 - 80% dodecane + 20% PXE + 0.1% Gd
 - Near: 100-200 m 60-80 mwe
 - Far: 1.05 km 300 mwe
- 3 years Sensitivity
 - 0.6% systematics
 - No signal: sin²(2θ₁₃) < 0.02-03 (90% C.L.)
 - Signal: $\sin^2(2\theta_{13}) > 0.04-05 (3\sigma)$
- Prospect (approved & funded in France)
 - 2007: far detector running
 - 2008: near detector running
 - Cost ~7Meuros + civil constr.

- First 1st generation experiment K2K
 - Confirmed v oscillation observed in atm v at SK @3.9 σ
 - Waiting precise meas. from MINOS(2005~), v_{τ} app. from CNGS(2006~)
- Next important issues
 - Discovery and measurement of only unknown mixing θ_{13}
 - Mass hierarchy
 - CP violation
- Next generation LBL experiments covers most
 - T2K using J-PARC and SK started construction. Start exp. In 2009 θ_{13} sensitivity ~0.006 (90%CL), ~0.018 (3 σ)
 - $|\delta|^{\sim}$ 20deg in phase 2
 - NOvA proposal w/ similar potential to T2K
- Pure θ_{13} measurements by reactor experiments
 - complementary to disentangle parameter relations
 - θ₁₃ sensitivity 0.01~0.03 (90%)
 - Systematic error (<1%) is key issue
 - Double-CHOOZ is partially approved
- Neutrino field will continue to be very exciting for coming decades