The JHF Neutrino Experiment

-- a second generation long baseline neutrino oscillation experiment --

Takashi Kobayashi IPNS, KEK

Contents

- 1. Motivation
- 2. JHF v experiment
- 3. Physics in 1st phase
- 4. Physics in 2nd phase
- 5. Recent development
- 6. Summary

hep-ex/0106019 KEK Report 2001-4 ICRR-Report-477-2001-7 TRI-PP-01-05

"JHF" is not official name. Soon decided.

JHF Neutrino Working Group

ICRR/Tokyo-KEK-Kobe-Kyoto-Tohoku-TRIUMF

Y.Itow, T.Kajita, K.Kaneyuki, M.Shiozawa, Y.Totsuka (ICRR/Tokyo)
Y.Hayato, T.Ishida, T.Ishii, T.Kobayashi, T.Maruyama, K.Nakamura,
Y.Obayashi, Y.Oyama, M.Sakuda, M.Yoshida (KEK)
S. Aoki, T.Hara, A. Suzuki (Kobe)
A.Ichikawa, T.Nakaya, K.Nishikawa (Kyoto)
T.Hasegawa, K.Ishihara, A.Suzuki (Tohoku)
A.Konaka (TRIUMF)

(http://neutrino.kek.jp/jhfnu)

Dec.99: Working group formed. Mar.00: First Letter of Intent prepared Jun.01 : Updated LOI released. Int. WS held.

Physics Goals

- 1. Test our current picture of 3 flavor neutrino oscillation → hints on physics beyond the SM (GUTs,...)
 - **1.** Discovery of v_e appearance (θ_{13} >0?)

Appearance of v_e at the same Δm^2 as v_{μ} disappearance Open possibility to detect CPV effect in lepton sector

2. Precision measurements of ocs. params.

 v_{μ} disappearance $(\Delta m_{23}, \theta_{23})/v_{e}$ appearance $(\Delta m_{13}, \theta_{13})$ Test exotic models (decay, extra dimensions,....)

3. NC measurement

No additional light "neutrino"?

2. Search for CPV in lepton sector

Leptgenesis?

3. Proton decay search Direct probe of GUTs

Neutrino Oscillation

Neutrino Mixing $|v_l\rangle = \Sigma U_{li}|v_i\rangle$

Weak Mass eigenstates eigenstates

Maki-Nakagawa-Sakata Matrix

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix}$$

Oscillation Probability

 $s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$

 Δm_{atm} -

 v_e appearance

$$P_{\mu \to e} \approx \frac{\sin^2 \theta_{23} \cdot \sin^2 2\theta_{13}}{\sim 0.5} \cdot \sin^2 \left(1.27 \Delta m_{atm}^2 / E_{\nu}\right)$$

 v_{μ} disappearance

$$P_{\mu \to x} = 1 - (P_{\mu \to e} + P_{\mu \to \tau} + P_{\mu \to sterile}) \approx 1 - P_{\mu \to \tau}$$
$$P_{\mu \to \tau} \approx \cos^4 \theta_{13} \cdot \sin^2 2\theta_{23} \cdot \sin^2 \left(1.27 \Delta m_{atm}^2 / E_{\nu} \right)$$

Overview

1st Phase

• $\nu\mu \rightarrow \nu x$ disappearance • $\nu_{\mu} \rightarrow \nu e$ appearance •NC measurement **2nd Phase** •CPV

•proton decay

JHF project and neutrino beam line

Principle

- Narrow spectrum tuned at the oscillation maximum.

• High sensitivity

$$\Delta m^2 = 1.6 \sim 4 \times 10^{-3} eV^2$$

• Less background

 $E_{v} = 0.4 \sim 1 \text{GeV}$

- Gigantic water Cherenkov detector

- High statistics
- High efficiency for low energy
- Good PID (e/μ) capability
- Neutrino energy reconstruction by using Quasi-elastic (QE) interaction.
 - Oscillation pattern measurement
 - BG due to miss-reconstruction of inelastic interaction
 - Greatly improved by using narrow spectrum

Off Axis Beam

WBB w/ intentionally misaligned beam line from det. axis

Quasi Monochromatic Beam

Narrow Band Beam for v int study @ near

Strategy and Goal (Phase1)

• ~ 5 years of OAB \rightarrow Tune peak energy at osc. max. \rightarrow precise measurement of θ_{23} and θ_{13} . \rightarrow v_e appearance search **Sensitivity (goal):** $\delta \sin^2 2\theta_{23} \sim 0.01$ $\delta \Delta m_{23}^2 < 1 \times 10^{-4} eV^2$ $sin^2 2\theta_{ue} \sim 0.003 (90\% CL)$ • Neutrino interaction study w/ NBB at near detector → Reduce systematic error

v_e appearance (θ_{13})

- Signal
 - Single e-like ring
 - At energy of v_{μ} disappearance dip
- Backgrounds
 - v_{μ} NC π^0 production
 - Lower *E* photon is missed/2 photon rings merged
 - Beam v_e comtamination
 - Broad *E* dist. Can be reduced w/ energy window.
 - ~0.2% of v_{μ} at peak of NBB/OAB

Dashed lines: MINOS Ph2le, Ph2me, Ph2he from right (A.Para, hep-ph/0005012)

v_{μ} disappearance

1ring FC μ-like

Ratio after BG subtraction

Fit with $1-\sin^2 2\theta \cdot \sin^2(1.27\Delta m^2 L/E)$

5 years precision

JHF-Kamioka Phase-II

Search for CP violation in $v_{\mu} \rightarrow v_{e}$ appearance Leading CP conserving term suppressed. ~2years for v_{μ} and ~6 years for $\overline{v_{\mu}}$ running

Search for proton decay.

CPV

CP Asymmetry

$$A_{CP} \equiv \frac{P - \overline{P}}{P + \overline{P}} \approx \frac{\Delta m_{12}^2 L}{E} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

Small fake asymmetry by matter effect at low energy

Recent development of the Project

• Experiment

since last April

- Decide to use OAB for LBL experiment
- NBB only for v int. study at near
- Decay pipe longer (80m→130m) for higher flux (~40% increase)
- Carefully investigating possibility of near det. @ ~2km (far/near spec. diff very small)
- Facility
 - Not approved yet.
 - Construction group **OFFICIALLY** formed in KEK (Apr.2001)
 - Technical design work is intensively being done.

→ Aim to submit budget request in 2002

One of the activities: GPS survey

Nov.19~22: long baseline GPS survery @ Kamioka/Tokai simultaneously

Noumi/Ishii/Shiino

Optics design of primary proton beam

Arc. super cond. part

Ichikawa

Design of Super con. mag started

Bore: 180 or 220mm

B field simulation

Cryo. Science Center of KEK

Summary(I)

• JHF-Kamioka Neutrino project

- ✓ **~MW 50GeV** PS @ JHF
- ✓ **Super-Kamiokande**@ 295km as far detector
- ✓ Low energy(~1GeV) conventional v_{μ} beam tuned at osc. max.
- ✓ Energy reconstruction by using **QE**
- ✓ **Narrow OAB** to reduce background and syst. err.
- ✓ NBB to study neutrino interaction for syst. error reduction
- Physics sensitivity in first phase
 - $\checkmark \sin^2 2\theta_{13} \sim 0.003 (90\% \text{ CL})$
 - $\checkmark \delta \sin^2 2\theta_{23} \thicksim 0.01$
 - ✓ δΔm₂₃² < 1 × 10⁻⁴eV²
 - \checkmark v_s existence can be tested.

• 2nd phase 4MW PS & Mt "Hyper-Kamiokande" detector

- → Sensitive to CPV of δ >10~20° with LMA solution
- → Proton decay 3σ dicovery upto $\tau \sim 1 \times 10^{35} (>3 \times 10^{34})$ yr for $e\pi^0(\nu K)$ mode

Summary(II)

- Plan to start data taking in Apr. 2007
 No change due to SK accident at all (refer Totsuka's statement)
- Neutrino facility not approved yet but...
- Facility construction group has been officially formed in KEK
 - → Aim to submit budget request in 2002