Aug.26, 2005 Lomonosov conf @ Moscow U.

1

(Present) Accelerator Neutrino Experiments

Takashi Kobayashi IPNS, KEK

Contents

1. Introduction

2. Oscillation experiments

- Long baseline: K2K(final resutls), MINOS, (CNGS, T2K)
- Short baseline: MiniBooNE
- 3. Non-oscillation experiments/measurements
 - Neutrino interactions: K2K, MiniBooNE,..(MINERvA)
 - DIS
- 4. Summary

- $\sim \% v_{e}$ from $(\pi \rightarrow) \mu \& K$ decay
- Oscillation experiments
 - Flavor contents after propagation → mass & mixing in lepton sector
 - Measure v_{μ} :disappearance, look for $v_{l\neq\mu}$: Appearance
- Non-oscillation experiments/measurements
 - v_µ+Nucleus interactions in GeV region (resonance, coherent,..)
 - → for future precision oscillation measurements
 - Nucleon structure with weak bosons as probes (DIS)
 - Electroweak couplings of light quarks $\rightarrow \sin \theta_{W}$ (DIS)

Neutrino mixing

If neutrino have finite mass, weak and mass eigenstates can differ

 $\left| \boldsymbol{v}_{l} \right\rangle = \Sigma U_{li} \left| \boldsymbol{v}_{i} \right\rangle$ m_{i} : 3 masses, Δm_{ij} : 2 differences Weak Mass eigenstates

Maki-Nakagawa-Sakata Matrix $s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix}$$
3 mixing angles and 1 CPV phase
$$= \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta} \end{bmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \end{bmatrix}$$
sin²2θ₁₂~0.8 sin²2θ₂₃~1 (Atm v) Reactor
$$I \text{Long baseline experiments}$$

3

Neutrino oscillation

Oscillation Probability

$$P_{l \to m} = \left| \left\langle v_m(t) | v_l(0) \right\rangle \right|^2 = \delta_{ml} - 2\sum_{i < j} \operatorname{Re}\left[\left(U_{mi}^* U_{li} \right) \cdot \left(U_{mj} U_{lj}^* \right) \cdot \left\{ 1 - \exp\left(-i \frac{\Delta m_{ij}^2}{2E} L \right) \right\} \right]$$

L: flight length, *E*: neutrino energy, $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$ mass eigenvalues

$$P_{l \rightarrow m} \neq \delta_{ml} \Leftrightarrow \Delta m_{ij} \neq 0$$
, Non-zero off-diag U

In 2 flavor approximation

 $\frac{L \text{ (km), } E \text{ (GeV)}}{L \text{ (GeV)}}$

1

$$P(v_{\mu} \rightarrow v_{\tau}) = \left| \left\langle v_{\tau}(t) \middle| v_{\mu}(0) \right\rangle \right|^{2} = \sin^{2} 2\theta_{23} \sin^{2} \left(1.27 \frac{L}{E} \Delta m_{23}^{2} \right)$$

Long baseline osc. experiments

- Evidence of v osc in Atm v at SK (1998)
 - First observation contradictory to SM
 - Small but non-zero mass!!
 - Large mixing!!!
- 1st generation LBL experiments
 - Confirmation of SK atm ν results
 - w/ different, controlled systematics
 - K2K (1999~2004)
 - MINOS (2005~)
 - CNGS(2006~)-OPERA/ICARUS

Δm² = 2.5 x 10⁻³ eV², sin²2θ = 1.0 2.0 < Δm² < 3.0 x 10⁻³ eV², sin²2θ > 0.93 (90%CL)

K2K experiment

First long baseline (250km) neutrino experiment.

 ν_{μ} disappearance and ν_{e} appearance

Experiment started in April, 1999 Terminated in November, 2004

Neutrino Detectors

Near neutrino detectors

From Mar.1999 ~ Jul.2001 Super-Kamiokande I Inner detector 11146 20" PMT Outer detector 1885 8" PMTs

K2K-II

K2K-I

From Dec.2002 ~ Nov. 2004

Super-Kamiokande II

Inner detector → ~5200 PMTs with covers Outer detector :1885 PMTs

Near detector measurements

Normalization

- Total number of events in 1kt-WC detector
- 100MeV threshold
- 74.9% efficiency
- \rightarrow Over all normalization
- Spectrum
 - Combined (1kt+Scifi+SciBar) fit of (p_{μ}, θ_{μ}) distribution

F/N spectrum ratio for extrapolation

- Use beam MC for F/N ratio central value
 - Sanford-Wang model w/ Cho(CERN) data
 - Confirmed by in-situ PIMON & HARP measurements
- Error
 - >1GeV: PIMON measurement error

HARP Result

Hadron prod meas. at CERN-PS 12.9GeV/c p on Al

T.Kobayashi (KEK)

V) 11

Allowed parameter region (#evts/spect combined)

Electron appearance

Neutral pion rejection

• Pi0 cut: Forced to find $2^{nd} e/\gamma$ -ring

Rec. momentum of the 1st ring (MeV/c)

Limit on the oscillation parameters

Expected # of electron cand.

T.Kobayashi (KEK)

MINOS

- FNAL 120GeV Main Injector → Soudan mine (735km)
- Horn-focused wide band v_{μ} beam
 - Tunable
 - \Box v_µ CC int./MINOS/yr ~ 2,500 (LE beam)
- (magnetized)Iron-scintillator sampling calorimeter
 - 5,400tons @ far, 980tons @ near
 - v_{μ} disappearance
 - Oscillatory behavior
 - Precise determination of Δm_{23}^2 , θ_{23}

If θ_{13} is close to the CHOOZ limt, MINOS will see >3 σ effect in ~3 years of running

NuMI Protons

Far detector events

CERN neutrino to Gran Sasso (CNGS)

- CERN 400GeV SPS → Gran Sasso
- ∇v_{τ} appearance (+ v_{e} appearance)
- 4.5x10¹⁹POT/yr
- Wide band v_{μ} beam
- $\sim 2900 v_{\mu} CC$ events/kt/yr
- First beam to GS May 2006
 - Underground civil const. finished Jun.20,2003
 - Beam line instrumentation being installed

OPERA (next next talk for detail!)

- τ ID by decay topology (kink)
- Emulsion-Counter Hybrid
- Total mass 1700 ton
- For 5yrs @4.5x1019POT/yr(200d)
- 12.8 ντ (0.8BG) for 2.4x10⁻³ eV²
- Start in June, 2006 with 850 tons emulsion film

ICARUS: Liq. Ar TPC

- 600ton in mine (T600).
- T1200 "abandoned" by INFN

T.Kobayashi (KEK)

Tokai-to-Kamioka (T2K) (~100xK2K)

T.Kobayashi (KEK)

Construction status

Superconducting combined function magnet

Sensitivities

T.Kobayashi (KEK)

Short baseline experiment

LSND observe osc signal

 LANL 800MeV/1mA *p* beam
 μ⁺ decay at rest in beam stop
 E_v<53MeV, L~30m

$$\mu^+ \to e^+ \nu_e \overline{\nu}_\mu \longrightarrow \overline{\nu}_e$$

 $\Box \Delta m^2 \sim 1 eV^2$, sin²2 $\theta \sim 10^{-(2\sim3)}$

• If true

- 3 mass diff. (sol/atm/LSND)

- >3 v's?

Sterile? (LEP says # of light v=3)

- CPV?

- Mass spect different for $\nu/anti-\nu$?
- Definite confirmation necessary
 - w/ different systematics

→ MiniBooNE

E_v(GeV)

0.2

10-3

Expected observation @ 10²¹pot

- **Signal : 300**
- Background 780 (NC π^0 & beam v_e dominant) T.Kobayashi (KEK)

 10^{-2}

sin²2v

MiniBooNE Status

- Data taking since Aug.2002
- 5.78x10²⁰pot so far (Jun.20,2005)
- >600k v interaction recorded.
- Detector calibration, studies of v interactions
- Signal box will be open in late 2005

Energy Calibration

T.NODAYASHI (NEN)

Non-oscillation exp's/measurements

v interaction @ ~ 1GeV

- Future precision oscillation experiments
 - E_v = Several 100MeV ~ A few GeV
- Neutrino interactions around ~GeV : Complicated!
 - CCQE: 2 body, clean energy reconstruction
 - CC/NC pion productions → Source of syst err/background
 - Deteriorate E_v reconstruction
 - Serious background from NC π^{0} production important for ν_{e} appearance

K2K NC π^0 measurement in 1kt det

 $v_{\mu} + H_2O \rightarrow NC1\pi^0$

- Important for future v_e appearance
- Selection
 - Fully contained
 - -2 e-like rings
 - $-85 < M_{\gamma\gamma} < 215 \text{MeV}$ $\frac{\sigma(v_{\mu} \rightarrow NC1\pi^{0})}{\sigma(v_{\mu} \rightarrow CCall)}$

 $=0.064\pm0.001\pm0.007$

=0.065 (model prediction)

Phys.Lett.B619:255-262,2005 hep-ex/0408134 T.Kobayashi (KEK)

K2K CC Coh. pion measurement

M. Hasegawa et al., hep-ex/0506008

CC Coherent pion production $(\nu_{\mu}+A \rightarrow \mu^{-}+\pi^{+}+A)$ w/ SciBar det.

- K2K & MiniBooNE has been observing forward (low q²) deficit
- →CC Coh doubted
- CC Coh enhanced sample selection
 - 2 track
 - not satisfy QE kinematics (non-QE like)
 - 2nd track pion (not proton)
 - No vertex activity
 - $q_{rec}^{2} < 0.1 (GeV/c)^{2}$
- Result
 - 113 event selected
 - BG (non CC Coh)=111.4
 - Consistent w/ No CC Coh.
- Upper limit (90%CL)

 $\sigma(\text{CC coherent } \pi) / \sigma(\nu_{\mu}CC) < 0.60 \times 10^{-2}$

Inconsistent w/ Rein&Sehgal model of 2.67x10⁻²

T.Kobayashi (KEK)

MiniBooNE interaction measurements

CCqe sample

MINERvA

- New experiment for v int measurements in few GeV region
- Active (scintillator bar) target (5.87ton) fine grained detector
- Placed in front of MINOS near detector
- Expected event rate
 - 16 × 10²⁰ POT in 4 years
 - Fiducial Volumes 3 ton (CH), 0.6 ton C, 1 ton Fe & 1 ton Pb
 - 15 Million total CC events
 - Status
 - Stage 1 approval in Apr.2004
 - Fermilab requested DoE funding as part of the laboratory's FY07 program
 - Projected schedule
 - 2006 construction start
 - 2008 commissioning start

$1.7 \times 3.3 \text{ cm}^2 \text{ strips WLS}$

fiber readout in center hole

v Deep inelastic scattering \rightarrow sin² θ_w

Summary

- Accelerator neutrino experiments probe/provide
 - Properties of neutrino (mass, mixings) in osc. exp'ts
 - Precision measurements of vN interaction
 - Precision test of standard model
- Oscillation experiments
 - Final results of the first long baseline osc exp K2K
 - Disapp.:1.88×10⁻³ ≤ Δm² ≤ 3.48×10⁻³ eV² (90%CL) @ sin²2θ=1 → Confirms SK results
 - $\Box v_{e} app.:sin^{2}2\theta_{\mu e} < 0.18 @2.8x10^{-3}eV^{2} (90\%CL)$
 - MINOS/CNGS LBL experiments is (will be) online from 2005 and 2006
 - MiniBooNE result is coming soon
- Non-oscillation measurements/experiments
 - vN interactions are being studied w/ high stat for future precision LBL experiments (K2K, MiniBooNE, NOMAD, MINERvA)
 - NuTeV's 3σ "discrepancy" from SM still remain. NOMAD will provide independent check with comparable uncertainty
- Acc v experiments have potential to provide breakthrough toward Beyond-the-SM. Many future programs planned. → Next Prof. Lindner's talk.