July 31, 2004 vFact04@Osaka

Science with High Intensity Hadron Machines

Takashi Kobayashi KEK

Contents

- 1. World High intensity machines
- 2. Neutron science
- 3. Muon science
- 4. Particle & Nuclear Physics
- 5. Nuclear Transmutation
- 6. Summary

World's Proton Accelerators

- High energy frontier has been extending our views in particle physics
- High intensity frontier
 - -0.1MW $\rightarrow 1$ MW
 - Mult-MW in the future
 - Gives many precise, detailed knowledge on nature in many fields

World's Future MW Proton Facilities

The Spallation Neutron Source (SNS)

- 1GeV 1.4MW Linac
- Accum. ring
- 60Hz pulsed beam
- Neutron science
- Constructing (~2006)

ESS - European Spallation Source

- 1.33GeV 10MW LINAC
- Compressor ring
- 2 target stations
- Proposed.

MW Proton Facilitiy in Japan J-PARC

Unique facility 3GeV+50GeV Multi-purposes •Materials and life sci. •Nucl. and part. phys. •Nucl. transmutation

Competendent

J-PARC In JAERI Tokai-site

JAERI: Japan Atomic Energy Research-Institute

February, 2004

Various Beams Obtained by p+A Collisions

Neutron science highlight

- Solid state physics: Observation of quantum effect (Understanding function and property of materials)
- Understanding precise atomic structure of materials (Indispensable base of materials science)
- Biomolecular science (Understanding life)
- Structure and dynamics of surface and interface
- Neutron imaging for industrial application and versatile researches
- High pressure and high temperature: Earth science

Light elements

Z dependence of sensitivity compared with X ray

An example: Behavior of Li in Li battery

X-rays interact with electrons. \rightarrow X-rays see high-Z atoms. Neutrons interact with nuclei. \rightarrow Neutrons see low-Z atoms.

Protein

Hen Egg-White Lysozyme

Water molecules Observed with neutrons

Hydrogen (H)Oxygen (O)

X-rays

Neutrons Protein From structure to function

DNA

A protein molecule moving along the DNA chain 10

NuFact04, July 26 ~ Au

Quantum effect in spin excitation

CuGeO₃

- Spin dynamics of low-dimension system
- Magnetic scattering
- Similar study of
 - lattice dymanics
 - electron dynamics
 - orbital dynamics

 \Rightarrow understanding of High T_c SC *etc.*

Muon science

Refer talks in WG4

Muon

μ SR and ultra slow muon

Neutrino physics at J-PARC Tokai-to-Kamioka (T2K) LBL v experiment

 Off-axis sub-GeV v_μ beam from J-PARC 50GeV-PS
~3000 v_μ CC int./yr (w/o osc.) v_e appearance discovery v_μ disapp. presice meas.
Experiment approved.
5 year const. Start exp. in 2009

T.Kobayashi (KEK)

NuFact04, July 26 ~ Aug. 1, Osaka U.

Kaon decay physics

- High precision frontier using high-intensity beams
- Test of the Standard Model and search for new physics
- Complementary to B physics and to the energy frontier

CKM matrix determination and test of unitary triangle

 Usefullness of FCNC decays

CP violation in $K_L \rightarrow \pi^0 v \overline{v}$

Direct CP Violating Process Standard Model prediction $\begin{array}{l} \mathbf{BR} \left(\mathbf{K}_{\mathrm{L}} \rightarrow \pi^{\mathrm{o}} \nu \, \overline{\nu} \right) \\ = 6 \, \kappa_{1} \cdot \mathrm{Im} (\mathbf{V}_{\mathrm{td}} \mathbf{V}_{\mathrm{ts}})^{2} \mathbf{X}^{2} (\mathbf{x}_{\mathrm{t}}) \\ = 1.94 \cdot 10^{-10} \eta^{2} \mathrm{A}^{4} \mathrm{X}^{2} \end{array}$ W W Z \mathbf{Z} $\sim 3 \times 10^{-11}$ **Determination** of η with 10% precision E391a : $10^{-9} - 10^{-10}$ KOPIO : 10^{-12} $-J-PARC : < 10^{-13}$ (50 events) (1000 events)Barrel Veto (Pb+Scin.) Photon Detector (CsI Crystal) 10m

$K^+ \rightarrow \pi^+ v \overline{v}$ at J-PARC

T.Kobayashi (KEK)

Strangeness Nuclear Physics

New Hadron Many-Body Systems with Strangeness

Spectroscopy of S=-2 systems

- Ξ hypernuclei/ $\Lambda\Lambda$ hypernuclei
- only a few events of $\Lambda\Lambda$ hypernuclei reported
- Ξ hypernuclear spectroscopy ?
- mixed states of Ξ , AA, and H exist ?
 - » K. Ikeda et al., Prog. Theor. Phys. 91 (1994) 747
- need high intensity beams
 - (K^-, K^+) reaction at 1.8 GeV/c ex. ²⁰⁸Pb(K^-, K^+) with 2 g/cm² thick target $\rightarrow \sim 6$ events/MeV/day
- *H* dibaryon (*ssuudd*, I=J=0)
 - no evidence so far
 - m_H >2223.7 MeV(~6 MeV below $2m_A$)
- S=-3 Ω nuclei, charm-hypernuclei *etc*.

Hadrons in nuclear matter

Methods to study the origin of hadron mass:

- Lattice QCD (theory)
- Implantation of a hadron in nuclear matter (J-PARC)
- Change of meson mass in nuclear matter due to "partial restoration of chiral symmetry".

Necessity of nuclear transmutation

• 99.5% transmutation efficiency will reduce the radioactivity level to the natural uranium level within 500 years

 Technical feasibility is studied using 600 MeV beam at JHF

MA : Np, Am, Cm LLFP : Tc-99, I-129

Accelerator-driven transmutation (ADS)

Summary

- High intensity hadron machines
 - MW-class facilities being constructed.
 - Multi-MW in the future.
- Provide powerful tool for extending our knowledge in wide range of fields
 - Industry (neutron,..)
 - Materials & life science (neutron, muon,..)
 - Fundamental science (n, μ , ν , K, \overline{p} ...)
 - Nuclear power
- Unique facility in Japan covering all fields "J-PARC"
 - will soon be online in 2008

- Phase 1 + Phase 2 = 189 billion Yen (= \$1.89 billion if \$1 = 100 Yen).
- Phase 1
 - 151 billion Yen for 7 years.
 - Construction : Apr.2001~Mar.2008
 - Neutrino included: Construction Apr.2004~Mar.2009

T violation in $K^+ \rightarrow \pi^0 \mu^+ \nu$ decay

3 Dimensional Movie for Industrial Usage

