JHF Preview

Takashi Kobayashi IPNS, KEK Sep. 6, 2000 NBI00@FNAL

Contents

- 1. Introduction
- 2. Neutrino Beam @ JHF
- 3. Physics Potential
- 4. Summary

JHF Neutrino Working Group

Y.Itow, Y.Obayashi, Y.Totsuka (ICRR) Y.Hayato, H.Ishino, T.Kobayashi, K.Nakamura, M.Sakuda (KEK) T.Hara (Kobe) T.Nakaya, K.Nishikawa (Kyoto) T.Hasegawa, K.Ishihara, A.Suzuki (Tohoku) A.Konaka (TRIUMF)

Dec.99: Working group formed. Mar.00: Letter of Intent prepared (http://neutrino.kek.jp/jhfnu) Now : Working to prepare "proposal"

Japan Hadron Facility (JHF) project

v physics @ JHF

Super Kamiokande as Far Detector

L=295km

 $\Delta m^2 = 2 \sim 5 \times 10^{-3} \text{eV}^2$

 \Longrightarrow osc. max @ $E_{\nu}=0.5 \sim 1.2 \text{GeV}$

Need Low Energy Beam

Goal

 $(3 \text{flavor}, \Delta m_{12} \ll \Delta m_{23} \sim \Delta m_{13})$ $\blacktriangleright v_{\mu} \rightarrow v_{x} \text{ disappearance } p = \cos^{4} \theta_{13} \sin^{2} 2\theta_{23} \sin^{2} (1.27 \Delta m_{23}^{2} L/E_{\nu})$ Precision measurements of osc. params Δm_{23} , $\sin^{2} 2\theta_{\mu x} \equiv \cos^{4} \theta_{13} \sin^{2} 2\theta_{23}$ $\delta(\Delta m_{23}^{2}) \sim 2x 10^{-4} \text{eV}^{2}$, $\delta(\sin^{2} \theta_{\mu x}) \sim 0.01$ $\blacktriangleright v_{\mu} \rightarrow v_{e} \text{ appearance } p = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin(1.27 \Delta m_{23}^{2} L/E_{\nu})$ Explore down to $\sin^{2} 2\theta_{\mu e} (\equiv \sin^{2} \theta_{23} \sin^{2} 2\theta_{13}) \sim 3x 10^{-3}$

Present Status

- 1. Optimization of beam line
 - Physics Potential
 - Cost (shielding)
- 2. Studying event selection at SK to improve v_e detection
- 3. Started design and R&D of front detector

Neutrino Beam @ JHF Possible Options

- ➢ Wide Band Beam (WBB)
 - 2 Horns almost the same as K2K
- ≻ Narrow Band Beam (NBB)
 - Horn(s) + Bending
- ➤ Off axis
 - Another option of NBB

Current Default Strategy

1year WBB → pin down Δm_{23}^2 to ±10% level 5year NBB → precise meas. osc. parameters

Target : Cu $1 \text{cm}^{\phi} \times 30 \text{cm}$ Wide Band Beam Horn : 250kA Decay Pipe $: 50 \text{m x} 1.5 \text{m}^{\phi}$ Gcalor 180 N_{int} (/100MeV/22.5kt/y JHF(10²¹POT~1yr) 160 140 100 cm 120 JHF w/ osc. 100 (∆m²=3.5x10⁻³) 2 horns (almost same design as K2K) 80 60 Advantage 40 Intense 20 K2K(10²⁰POT~5y •Wide sensitivity in Δm^2 0 2 3 Established Ev (GeV) **Disadvantage** N_{int} (/100MeV/22.5kt/yr) 0 1 01 01 10² Background from HE tail •Spectra diff. btw near&far 10 \rightarrow syst. err. •Heavy shielding needed \rightarrow decay pipe have to be short ~4200 ν_{μ} int./22.5kt/yr 10 10 2 6 8 12 14 n Ev (GeV) v.:0.8% yet to be optimized

yet to be optimized

Off Axis Beam (another NBB option)

WBB w/ intentionally misaligned beam line from det. axis

Quasi Monochromatic Beam

Off axis beam

Advantage

•More intense than NBB (~twice)

Disadvantage

- Heavy shielding
- More HE tail than NBB
- Hard to tune E_{ν}
- Not established (monitor, near/far)

~2200 int./22.5kt/yr

v_e: 0.8% (0.2% @ peak)

Shielding (cost driving factor)

Radiation dose at boundary is being estimated by using MARS Required to be less than 11.4mSv/h (2.3x 10^{-17} mSv/p)

WBB&Off axis can not be long.

Physics Potential

 v_{μ} disappearance 200 80 **1ring FC** μ-like $\Delta m^2 = 5 \times 10^{-3}$ No osillation 150 60 $sin^2 2\Theta = 1.0$ 100 40 Total Inelastic 50 20 0 0 2000 2000 4000 4000 0 0 Reconstructed $E\nu$ (MeV) $1.021 \pm 0.3105E - 01$ Ratio P1 Ratio aft. BG subt. P2 0,4963E-02 ± 0,140 E-03 3 $\Delta m^2 = 5 \times 10^{-3}$ $sin^{2}2\Theta = 1.0$ 2 1 0 -1 2 3 5 1 4 0 Ev (GeV)

Fit with $1-\sin^2 2\theta \cdot \sin^2(1.27\Delta m^2 L/E)$

Sensitivity on $\nu_{\mu} \rightarrow \nu_{e}$ appearance w/ improved π^{0} rejection (from LOI)

Summary

1. Goal of ν physics @ JHF (hope to start in 2006)

Precise determination of oscillation parameters

- with low energy v_u beam (~1GeV)
- with Super Kamiokande @ L=295km
- 2. Neutrino Beam: three options
 - WBB ~4200 $\nu_{\mu} N_{\text{int}}/22.5 \text{kt/yr}$
 - NBB ~ 830 $\nu_{\mu} N_{\text{int}}/22.5$ kt/yr Off axis ~2200 $\nu_{\mu} N_{\text{int}}/22.5$ kt/yr
- 3. Strategy: 1year WBB $\rightarrow \delta(\Delta m_{23}^{2}) \sim \pm 2 \times 10^{-4} eV^{2}$ 5 years NBB (or Off axis beam) $\rightarrow \delta(\sin^2 2\theta_{ux}) \sim 0.01$ $\rightarrow \sin^2 2\theta_{\mu e} \sim 0.005 \ (0.003)$
- 4. To decide beam config.
 - 1. optimize each beam and compare the potential
 - 2. estimate the cost (shielding,)
- 5. R&D required on target and beam monitoring
- 6. Started design and R&D of the front detector

Neutrino Energy Reconstruction (GeV region)

Assume CC quasi elastic (CCqe) reaction

Comparison of Beams

Fair Comaprison "Realistic" Design (same decay pipe length=50m) ν_μ Flux (x10⁶/100MeV/cm²/10²¹POT) 50 1 51 5 5 5 5 ν_μ Flux (x10⁶/100MeV/cm²/10²¹POT) OFF2° OFF2° OFF0° OFF0° Wide Wide $LE2\pi$ (2horns 0 0 5 E_v 0 2 $\mathbf{0}$ 2 3 4

 $LE2\pi$

3

(2horns)

4

_5 Ε_ν

Decay Pipe Len. Off axis: 90m LE2pi: 155m Wide: 50m