Dec.6, 2000 NOON00@Tokyo

Present and future of the Japanese long baseline neutrino oscillation experiment

T.Kobayashi IPNS, KEK

Contents

1.Results of K2K

- 1. Experimental setup
- 2. Results

2.Neutrino oscillation experiment at JHF

- 1. Physics motivation
- 2. JHFv project
- 3. Physics sensitivity
- 4. Future extensions

3.Summary

K2K Overview

- •almost pure $\nu_{\mu}(99\%)$ beam w/ $\langle E_{\nu} \rangle \sim 1.3 \text{GeV}$
- •Far detector: Super Kamiokande(SK)@250km
- •Most sensitive at $\Delta m^2 \sim 7 \times 10^{-3} \text{ eV}^2$
- V_{μ} disappearance and V_e appearance

Neutrino Beam Production

 $p+Al \rightarrow \pi^+ \rightarrow \mu^+ + \nu_{\mu}$

PS: 13GeV/c proton

1.1µsec spill/2.2sec
6x10¹²protons/spill (design)

Beam line: aligned toward SK using GPS

(global positioning system)
GPS< 0.01mrad, civil const<0.1mrad

Decay pipe: 200m

Neutrino Spectra and Radial Distributions at 300m/250km (MC)

Almost const flux < 1km(4mr) @ SK Near/Far spectra differ

Front NeutrinoDetector(FD)

Purpose

- 1. V_{μ} absolute flux
- 2. ν_{μ} directrion(profile)
- 3. ν_e contamination
- ≻1kt water Cherenkov detector
- Scintillation Fiber Tracker(SFT): SF sheets+water(6cm)
- ≻Electromagnetic calorimeter : lead glass
- ≻Muon chamber (MUC) : drift chamber+iron plates

Strategy

For now,

1. count # of events @ SK

2. calc. expected # of events @ SK

$$N_{SK}^{\exp} = \frac{N_{FD}^{\text{obs}}}{\varepsilon_{FD}} \cdot R \cdot \varepsilon_{SK}$$

 N_{FD}^{obs} :observed # of events in one of FDs

R: Near/far ratio from MC (guaranteed by Pi mon) ε : detection efficiency

3. compare N_{SK}^{obs} and N_{SK}^{exp}

use 1kt events as a reference check consistency btw. kt/Fe/SFT events

*eventually,... $N_{SK}^{obs}(E_v)$ and $N_{SK}^{exp}(E_v)$

Delivered Beam

- Design Proton Int. 6x10¹² protons/pulse almost achieved (5.5x10¹²)
- $\sim 2.6 \times 10^{19}$ POT delivered by the end of Jun. '00
- SK Live = 2.29x10¹⁹ POT(Jun99-Jun00)

Stability of Profile Center (Fe event)

Stable within ± 1 mrad.

Stability of Spectrum

Stable within stat. error

For integrated far/near ratio **R** in $N_{SK}^{exp} = \frac{N_{FD}^{obs}}{\varepsilon_{FD}} \cdot \mathbf{R} \cdot \varepsilon_{SK}$

use MC for central value

syst. error
$$\Delta R = \frac{+6\%}{-7\%}$$
 from Pi. mon.
(for 1kt)

GPS time stamping

GPS 1pps interpolated with local time clock(LTC

Event POT Distribution

fully contained, vertex in fiducial volume

of observed and expected events @ SK

	Obs.	Exp.
FC 22.5kt	27	$40.3\begin{array}{c}+4.7\\-4.6\end{array}$
1-ring	15	$24.3{\pm}3.6$
μ -like	14	$21.9{\pm}3.5$
e-like	1	$2.4{\pm}0.5$
$\operatorname{multi}_{\operatorname{ring}}$	12	$16.0{\pm}2.7$

Reconstructed E_v

Fully contained 1-ring µ-like (22.5kt)

Need to estimate syst. err. in MC expect.

Expected Allowed Region

$10^{20} \text{ POT} \sim 5 \text{ years}$

JHF Neutrino Working Group

Y.Itow, Y.Obayashi, Y.Totsuka (ICRR) Y.Hayato, H.Ishino, T.Kobayashi, K.Nakamura, M.Sakuda (KEK) T.Hara (Kobe) T.Nakaya, K.Nishikawa (Kyoto) T.Hasegawa, K.Ishihara, A.Suzuki (Tohoku) A.Konaka (TRIUMF)

Dec.99: Working group formed.

Mar.00: Letter of Intent prepared (http://neutrino.kek.jp/jhfnu)

Now : Working to prepare a proposal

Physics motivation

1. Test our current picture of 3 flavor neutrino oscillation

- Spectrum shape of V_{μ} disappearance
 - Test exotic models (decay, extra dimensions,....)
- Appearance of v_e at the same Δm^2 as v_{μ} disappearance
- NC measurements
 - No additional "neutrino"?

2. Precise measurement of Δm^2 and mixing angles (θ_{23}, θ_{13})

- mixing matrix in quark sector: well known
- understanding of mixing in lepton sector
- understanding of mass structure
 - \rightarrow hints on physics beyond the SM (GUTs,...)
- 3. Discovery of V_e appearance

 \rightarrow Open possibility to detect CPV effect in lepton sector

Vµ→ Vx disappearance
Vµ→ Ve appearance
NC measurement

JHF project and neutrino beam line

Neutrino Beam @ JHF

Three beam configurations

- > Wide Band Beam (WBB)
 - -2 Horns almost the same as K2K

≻Narrow Band Beam (NBB)

-Horn(s) + Bending

≻Off Axis Beam (OAB)

-Another option of NBB

Off Axis Beam (another NBB option)

WBB w/ intentionally misaligned beam line from det. axis

Quasi Monochromatic Beam

Off axis beam

```
~2200 int./22.5kt/yr
```

ν_e: 0.8% (0.2% @ peak)

High int. narrow band beam More HE tail than NBB Hard to tune E_{ν}

Strategy and Goal

• First 1 year WBB

 \rightarrow pin down Δm_{23}^2 to $\pm 10\%$ level

 \rightarrow NC measurement

• 5year NBB or OAB

 \rightarrow precise measurement of θ_{23} and θ_{13} .

Sensitivity (goal):

 $\delta sin^{2}2\theta_{23} \sim 0.01$ sin²2θ₁₃ ~ 5 × 10⁻³ (90% CL) $\delta \Delta m_{23}^{2}$ ~ 1.5 × 10⁻⁴eV² at (sin²2θ=1.0, Δm^{2} =3.2 × 10⁻³eV²)

 v_{μ} disappearance

1ring FC μ-like

Fit w/ $1-\sin^2 2\theta \cdot \sin^2(1.27\Delta m^2 L/E)$

v_e appearance (θ_{13})

- Signal
 - 1ring e-like ring
 - At energy of v_{μ} disappearance dip
- Backgrounds
 - ν_{μ} NC π^0 production
 - Lower *E* photon is missed
 - Beam v_e comtamination
 - Broad *E* dist. Can be reduced w/ energy window.
 - 0.2-0.3% of ν_{μ} at peak of NBB/OAB

Preliminary

Sensitivity on $\nu_{\mu} \rightarrow \nu_{e}$ appearance

Dashed lines: MINOS Ph2le, Ph2me, Ph2he from right (A.Para, hep-ph/0005012)

Future Extensions

- PS upgrade to 4MW and 1Mton water Cherenkov detector
 - 2 order increase in statistics
 - CPV if v_e appearance discovered in the 1st phase
 - O(100) v_e events/year if θ_{13} =0.1x(Chooz limit)
 - (Proton decay)
- Very LBL experiment (1000-2000km)
 - ~300(1200)CC events/100kt/yr @ 2000(1000)km w/ 6GeV NBB
 - Sign of $\Delta m^2 s$
 - Matter effect
 - CPV

Summary

K2K

- **2.29x10¹⁹POT** @ SK from Jun '99 to Jun '00
- Neutrino beam is well under control
 - Direction: within 1mrad
 - Spectrum: stable within stat. error
 - ➢ Intensity: stable within stat. error
 - Pi mon proved MC spectra ratio
- # of fully contained events in fiducial volume @ SK

Observed: 27

Expected : $40.3^{+4.7}_{-4.6}$ (w/o osc.)

• Experiment will resume Jan. 2001

JHF

- Low energy conventional v_{μ} beam w/ MW 50GeV PS
- SK as far detector at *L*=295km
- E_{ν} tuned at osc. max.
- Great precision thanks to high intensity & large det.

✓
$$sin^2 2\theta_{13}$$
 ~ 5 × 10⁻³ (90% CL)

✓ $\delta\Delta m_{23}^2$ ~ 1.5 × 10⁻⁴ eV²

at
$$(\sin^2 2\theta = 1.0, \Delta m^2 = 3.2 \times 10^{-3} eV^2)$$

 \checkmark v_s existence can be tested

- Design and R&D work have just been started.
- Expect data taking in 2006-7