May 29, 2001 vFact01 WG3

Conventional Neutrino Beam at K2K and JHF

T.Kobayashi IPNS,KEK

K2K Neutrino Beam

for KEK Beam Channel Group

and K2K Beam Monitor Group

JHF Neutrino Beam

for JHFnu Working Group

Pure v_µ beam (~99%)
>v_e (≤1%) from π→µ→e chain and K decay(K_{e3})
>v_µ/v_µ can be switched by flipping polarity of focusing device

General Requirements on Conventional Neutrino Beam (for long baseline experiments)

- Fast Extraction w/ precise beam timing info.
 - to identify v event from acc. at far detector
 - \rightarrow Kicker magnet
 - →GPS time stamp (Δt ~200ns)
- As high intensity as possible
 →High transmittance beam transport
 →Electromagnetic Horn
- Precise directioning (<3mrad) →GPS survey
- Stable

Neutrino Spectra and Radial Distributions at 250km (MC)

Change in flux/spectrum < 3mr(750m) @ SK negligible

General Layout of the KEK Neutrino Beam Facility

The Apparatus for the Longest Shooting Game

Proton Beam Line

(400m Long, 114 Magnets)

Single turn fast extraction

9bunches/1.1µsec spill/2.2s

•Protons@Entrance

6.3x10¹² protons/2.2s

•Protons @ Horn

5.4x10¹² protons/2.2s

000

~85% Transmission

•Some Magnets are replaced by larger bore ones.

•Beam Monitors are set in vacuum.

K2K Electromagnetic Horns

Tandem horn system

 1st Horn : Outer diameter= 0.62m, Length= 2.42m Built-in production target (<\psi30mm) High magnetic field (5 Tesla)

- 2nd Horn : Outer diameter= 1.65m, Length= 2.76m Thin inner conductor (thickness 3mm) Large magnetic volume
- Operation current 250kAmp at both horns
- High pulsed current 2.5ms width, 2.18s cycle
- Total Joule's heat=7740 kcal/h

Electromagnetic Horns

2001/5/8 yamanoi

Positioning of SK and KEK

(1) Procedure

Local GPS at KEK Long Baseline GPS btwn KEK and Kamioka Local GPS in Kamioka Optical Survey in the Mozumi Mine(SK)

(2) Precision of Positioning

GPS:

```
Nominal error:

\angle = 10^{-6}xD + b, b~5-10mm, D=250km

= 0.3m(KH)
```

```
Optical Survey:
the Error of Closure:
⊿<sub>traverse</sub>=0.9m(SK)
⊿<sub>leveling</sub> =0.4m(SK)
```


Summary

(1) Beam Line Construction & Operation

Stably Running since 1999.6

(2) Positioning of SK and KEK

```
\triangle_{\text{Horizontal}} = 1.2\text{m}
\triangle_{\text{Vertical}} = 0.7\text{m}
positioning precision = 5x10<sup>-6</sup>
```

- (3) Beam Line Alignment to the SK Direction Monitoring the Beam Line Direction ± 0.02 mrad in Hor. ± 0.05 mrad in Ver.
- (4) Beam Control

Established the Tuning of Beam Direction

- \pm 0.03 mrad in Hor.
- \pm 0.06 mrad in Ver. in finite time range

Experimetal Requirement was 1 mrad

Decay Volume and Muon Monitor

µ-beam profilemeasured by muon monitor(Segmented PPIC & SSD)

Measurement/Control Accuracy is <0.1 mr. Requested Stability is ± 1 mr. Short Range Stability of Muon Centroid

Stability of Muon Profile Center (a) Muon Monitor

Fast (spill-by-spill) but indirect monitor

Stable within ±1mrad

Neutrino Beam @ JHF

"Super" conventional low energy beam

$\Box \Delta m^2 = 1.6 \sim 4 \times 10^{-3} eV^2$ from atm. v at SK

• $\rightarrow E_{\nu} \sim 1 \text{GeV}$

Three Beams

50GeV PS & Extraction Neutrino III Intensity 3.3x10¹⁴ proton/pulse (ppp) Repetition rate 0.292 Hz > Power **0.77 MW** (2.64 MJ/pulse) > Single turn fast extraction ($\sim 5.23 \mu sec$ spill) 8 bunches/spill (2 out of 10buckets empty) \succ Kicked 4.9° inside PS ring Straight matching section 43 m

(conventional magnets)

Arc & Final focus

Bend $\sim 85^{\circ}$ to SK direction

50GeV, 110 m curvature →Need super con. mag.

Typical magnet parameters ~4T, ~4m long(to be decided) →need 15~20 dipole magnets

Proton directed 1.25° downward

of CC events of various beams

WBB:**5200** CC int./22.5kt/yr NBB: **620** CC int./22.5kt/yr (2GeV/c π tune) OAB: **2200** CC int./22.5kt/yr (2degree)

Summary

K2K neutrino beam

- First neutrino beam facility for long baseline neutrino experiment
- Proton beam transport >85% eff.
- Tandem horns with 250kA pulsed current operation
- Life time of horns is ~6 M excitations
- Beam direction

GPS survey $\pm 20\mu rad(H)$, $\pm 50\mu rad(V)$ in KEK Beam control : $\pm 30\mu rad(H)$, $\pm 60\mu rad(V)$ (short term) $<\pm 1mrad$ for whole running period

 \rightarrow Satisfy experimental requirement

➤ ~4.6x10¹⁹POT has been delivered since 1999.

JHF neutrino beam

- > 3.3×10^{14} ppp, 0.77 MW $\rightarrow \sim 10^{21}$ POT/yr
- > Technical design of facility going on
- Use super conducting magnets
- ➤ 3 beam configurations
 - WBB **5200** ν_{μ} CC int/22.5kt/yr
 - NBB 620 v_{μ} CC int/22.5kt/yr
 - OAB 2200 v_{μ} CC int/22.5kt/yr
- Tunable peak energy
- > Aim to complete at the same time as acc.(2007)

pH control & Corrosion

Incident proton beam and pulsed current

The current of 2^{nd} horn was delayed $100 \,\mu$ s for synchronizing with the incident beam.

16