vFact02 July 1, 2002 Imperial College London

Super muon-neutrino beam

Takashi Kobayashi IPNS, KEK

Contents 1. Introduction 2. "Super-beam" long baseline experiments 3. Physics sensitivity 4. Summary

Next goals of LBL experiments

• Establish 3 flavor framework (or find something new)

- * Discovery of v_e appearance ($\theta_{13} > 0$?)
 - At the same Δm^2 as v_{μ} disapp. \rightarrow Firm evidence of 3gen. mix.
 - Open possibility to search for CPV
- * Confirmation of $v_{\mu} \rightarrow v_{\tau}$
 - Appearance
 - NC measurement
- * Precision measurements of ocs. params.
 - $\Delta m_{23}, \theta_{23}/\Delta m_{13}, \theta_{13}$
 - Test exotic models (decay, extra dimensions,....)
- Sign of Δm^2
- Search for CPV in lepton sector
 - ✤ Give hint on Matter/Anti-matter asymmetry in the universe₂

with MW-class proton beam

Pure v_μ beam (≥99%)
 v_e (≤1%) from π→μ→e chain and K decay(K_{e3})
 v_μ/v
_μ can be switched by flipping polarity of focusing device
 For high precision LBL experiments

"Super beam LBL experiments" ≈ "2nd generation LBL experiments w/ high intensity conventional beam"

- High statistics
 - ★ Beam intensity $\leq 100 \text{kW} \rightarrow \geq \text{MW}$ (super beam)
 - * AND/OR detector mass ~ 10 kt $\rightarrow 100 \sim 1,000$ kt
- Designed and optimized after the knowledge of Super-Kamiokande/K2K results
- Primary goal: v_e app. \rightarrow CPV, sign of Δm^2
- Japan: JHF(off-axis) \rightarrow SK/HK
- FNAL: Off-axis NuMI, Proton driver upgrade,
- BNL: Super AGS(off-axis) \rightarrow ?
- ◆ CERN: SPL→Furejus, Off-axis CNGS

Next critical path $v_{\mu} \rightarrow v_{e}$ appearance

Signal

V_L – Ve – T

Backgroud

 Beam intrinsic v_e contamination Identical signature w/ signal Different energy distribution

Single EM shower

2. NC π_0 production

3. NC multi pion production

 v_x π_0 γ

Key for v_e appearance experiment

- High statistics
- Small background contamination (beam)
 - * intrinsic $v_e \rightarrow$ short decay pipe,...
- Background rejection (beam+detector)
 - ↔ event topology (e⇔π₀)
 - * narrow spectrum beam w/ neutrino energy reconstruction
 - \rightarrow additional kinematical constraint
- Small systematic error on background estimation
 - near/far spectrum difference
 - cross section
 - detector response

Charged current cross sections

Background rejection

* Fake " v_e " event by π_0 & beam v_e broad

$E_{\rm v}$ reconstruction

♦ ≲1GeV

- 2-body kinematics of dominant CCqe
- * Water Ch. works well
- ♦ ≥1GeV

Inelastics (nuclear resonances) dominate
(Fine grain) sampling calorimeter. Resolution?
Full reconstruction of secondary particles?

Important not only for v_{μ} disappearance, but also for sig/BG estimation for v_{e} search

("super-beam") LBL experiments

	E _p	Power	Beam	$\langle E_{\rm v} \rangle$	L	M _{det}	$\nu_{\mu}CC$	v _e
	(GeV)	(MW)		(GeV)	(km)	(kt)	(/yr)	@peak
K2K	12	0.005	WB	1.3	250	22.5	~50	~1%
MINOS(LE)	120	0.41	WB	3.5	730	5.4	~2,500	1.2%
CNGS	400	0.3	WB	18	732	~2	~5,000	0.8%
JHF-SK	50	0.75	ΟΑ	0.7	295	22.5	~3,000	0.2%
JHF-HK	50	4	OA	0.7	295	1,000	~600,000	0.2%
OA-NuMI	120	0.3	OA	~2	730?	20kt?	~1,000?	0.5%
OA-NuMI2	120	1.2	OA	~2	730?	20kt?	~4,000?	0.5%
AGS→??	28	1.3	WB/OA	~1	2,500?	1,000?	~1,000?	
SPL-Furejus	2.2	4	WB	0.26	130	40(400)	650(0)	0.4%
OA-CNGS	400	0.3	OA	0.8	~1200	1,000?	~400	0.2%

The plans are in very different phases. Most are in optimization phase. JHF-SK most advanced

- >budget request submitted
- EXISITING real detector

Phase-II (4MW+Hyper-K) ~ Phase-I × 200

Principle of JHF-Kamioka project

- Intense Narrow Band Beam by "off-axis".
- Beam energy is at the oscillation maximum.
 - * High sensitivity, less background
- ◆ ~1 GeV v beam for Quasi-elastic interaction.

Expected spectrum

Detectors at near site

Muon monitors @ ~140m

- Behind the beam dump
- Fast (spill-by-spill) monitoring of beam direction/intensity

First Front detector "Neutrino monitor" @280m

- Intensity/direction
- Neutrino interactions

Second Front Detector @ ~2km

- * Almost same E_{ν} spectrum as for SK
- Absolute neutrino spectrum
- Precise estimation of background
- Investigating possible sites

Far Detectors

USA: FNAL and BNL plan

- ◆ BNL: Super AGS (1.3MW, LOI submitted)
- FNAL: Super NUMI (1.6 MW) or the new proton driver. (hep-ex/0205040,0204037,hep-ph/0204208)

OA-NuMI

Osc. max. @ 730km **1.8GeV** (∆m²=3x10⁻³eV²)

Features

Nuclear resonance region

 → Inelastic background
 → Energy reconstruction?

 Too large angle → Kaon peak
 Beam goes 3.5deg downward
 → hard to place 2nd near det.
 → Far/near ratio?
 Para/Szleper's prescription using Matrix (hep-ex/0110001)

Europe: SPL→Furejus

Detectors

1- TOP END CAP IRON YOKE 2- BOTTOM END CAP IRON YOKE 3- BARREL IRON RETURN YOKE LIQUID AT TPC 4- COIL 5- CRYOSTAT

8- FIELD SHAPING ELECTRODES

LANNDD Liquid Argon Neutrino and Nucleon Decay Detector

Physics Sensitivity

<u>ve appearance in JHF-Kamioka (phase 1)</u>

(5 years running)

<u>ve</u> appearance (continue)

$\underline{v_{\mu}}$ disappearance

 $\delta sin^2 2 \theta_{23} \sim 0.01$ $\delta \Delta m_{23}^2 < 1 \times 10^{-4} eV^2$

US Super v beam

 They are studying the physics potential of several options, which are competitive to JHF-Kamioka project.

Possibility to discriminate sign of Δm^2 (Matter effect)

Summary

- Exciting topics in 2nd generation LBL experiments.
 - ne appearance
 - * CPV, sign of Δm^2 ,
- Several "super-beam" experiments are under consideration
 - * US, Europe and Japan
 - * They are in very different stages.
- Earliest beam is expected in 2007 at JHF-Kamioka project
 - Accelerator construction started in 2001.
 - * Budget request for v facility submitted this year.

Summary (II)

- Physics sensitivity of JHF-Kamioka project
 - $sin^2 θ_{13} ≤ 0.006 (90% CL)$
 - * $\delta(\Delta m^2) \leq 3\%$, $\delta(\sin^2\theta_{23}) \sim 1\%$
- Experiments are complementary each other
 - * JHF-Kamioka hard to see matter effect
 - ✤ → Longer baseline/higher energy experiments
- vFact will come after the (at least) 1st round of superbeam experiments (10~20yrs)
 - ♦ If $sin^2 θ_{13} ≤ 0.01$, JHF-SK may not see, but JHF-HK may.
 - ✤ But sensitivity to CPV in JHF-HK reduces
 - $\bullet \rightarrow CPV in vFact?$

Future Prospect

2002 : JHFn budget request&approval2003 : start construction2005 : K2K final results

20xx Future SuperBeam, VLBL, v-fact for very small θ_{13} , CPV, sign of Δm^2_{33}

(Super) Neutrino Beams

	<ev> (GeV)</ev>	L (km)	#CC v /kt/yr	L/L _{osci} *	f(v _e) @peak
K2K	1.3	250	2	0.47	~1%
NuMi (High E)	15	730	3100	0.12	0.6%
NuMi (Low E)	3.5	730	469	0.51	1.2%
CNGS	17.7	732	2448	0.10	0.8%
JHF-I	0.7	295	133	1.02	0.2%
Numi off-axis	2.0	730	~80	0.89	0.5%
JHF-II	0.7	295	691	1.02	0.2%
SPL	0.26	130	16.3	1.21	0.4%

FNAL, BNL to Soudan

Water Cherenkov like Super-K

Far/near spectrum ratio

 $\Phi_{far}(E_v) \cdot L^2_{far}$

Sensitivity for Mixing Angle

$\underline{\nu_{\mu} \rightarrow \nu_{\tau}}$ confirmation w/ NC interaction

• NC π^{0} interaction (v + N \rightarrow v + N + π^{0}) • $v_{\mu} \rightarrow v_{e}$ CC + NC(~0.5CC) ~0 (sin²2 $\theta_{\mu e}$ ~0) v_{\mu} CC + NC(~0.5CC) ~0 (maximum oscillation) v_{\tau} NC

(High Intensity) Proton Accelerators

	Power (MW)	Energy (GeV)	Intensity (10 ¹² ppp)	Rep. rate (Hz)
KEK-PS	0.005	12	6	0.45
AGS	0.14	24	60	0.6
FNAL-MI	0.41	120	40	0.53
SPS	0.3	400	35	0.16
JHF-I	0.77	50	330	0.29
Super-AGS	1.3	28	120	2.5
FNAL-proton driver-I	1.2	16	30	15
SPL	4	2.2	230	50
JHF-II	4	50		

Not the construcion stage yet, but R&D stage

Some ideas for OA-NuMI detector (under consideration)

SOMINOS(Fe+Sci) Szleper+Velasco

5kt, 12m dia., 875planes

Super Proton Linac (SPL) @ CERN

Parameter	value	Unit
Mean beam power	4	MW
Kinetic energy	2.2	GeV
Repetiton rate	50	Hz
Pulse duration	3.3	μs
Pulse intensity	2.27 $\times 10^{14}$	p/pulse

Under R&D phase